PACIFIC COAST EDITION

MOTORS

APPLICATIONS · RATINGS · PRICES · DATA

MOTORS

PICTORIAL SELECTOR

POLYPHASE MOTORS

SINGLE-PHASE MOTORS

DIRECT-CURRENT MOTORS

SPEED REDUCERS & GENERATORS

MODIFICATIONS

CONTROL

DIMENSIONS

HOW TO SELECT AND APPLY

HOW TO IDENTIFY

HOW TO SELECT A-C CONTROL

HOW TO INSTALL

HOW TO SERVICE

HELPFUL DATA

1942

GENERAL 🍪 ELECTRIC

SCHENECTADY, NEW YORK

CATALOG GEA-624E Supersedes GEA-624D Printed in the United States of America

20

CONTENTS

TORIAL	SELECTOR FOR G-E MOTORS — Pages 6-22	PAGES
	Polyphase Motors	6-3
	Single-phase Motors	9-11
	Direct-current Motors	11-13
	Miscellaneous Motors and Generators	14-17

PRICES AND DESCRIPTION OF MOTORS

PIC

POLYPHASE MOTORS — Pages 23-36

Fractional-hp Motors	23-24
Tri-Clad Open Motors	25-27
Tri-Clad Splashproof Motors	28
Totally Enclosed Motors	29-30

SINGLE-PHASE MOTORS — Pages 37-42

Workshop Motors	
Split-phase Motors	38
Capacitor-motors	

DIRECT-CURRENT MOTORS — Pages 43-49

Fractional-hp Motors	44
Integral-hp Open Motors	

SPEED REDUCERS AND GENERATORS — Pages 50-61

Speed Reducers, General	
Fractional-hp Speed Reducers	
Integral-hp Speed Reducers	

MODIFICATIONS AND ACCESSORIES FOR: - Pages 62-69

Fractional-hp Motors	.62-63
Integral-hp A-c Motors	.64-67

CONTROL FOR MOTORS — Pages 70-77

DIMENSIONS OF MOTORS — Pages 78-95

HOW TO SELECT AND APPLY MOTORS — Pages 96-113

Motor-application Guide Form96-100Electrical Types of Single-phase Motors101-103Electrical Types of Polyphase Motors104-107

HOW TO IDENTIFY MOTORS —Pages 114-118

HOW TO SELECT A-C CONTROL — Pages 119-124

HOW TO INSTALL MOTORS — Pages 125-132

How to Locate and Align Motors	.125-126
How to Select Belts and Pulleys	.126-129

HOW TO SERVICE MOTORS — Pages 133-139

General Inspection	.133
How to Lubricate Motors	.133-136

HELPFUL MOTOR INFORMATION — Pages 140-146

Definitions1	40-142
Approximate Full-load Speeds1	42
Approximate Full-load Currents1	43
Synchronous Speeds1	43

For Complete Subject Index, See Pages 147-149 PICTORIAL SELECTOR FOR G-E MOTORS (Cont.) — Pages 6-22 PAGES PICTORIAL SELECTOR **PRICES AND DESCRIPTION OF MOTORS (Cont.)** POLYPHASE MOTORS (Cont.) — Pages 23-36 POLYPHASE MOTORS SINGLE-PHASE MOTORS (Cont.) — Pages 37-42 SINGLE-PHASE MOTORS DIRECT-CURRENT MOTORS (Cont.) — Pages 43-49 **DIRECT-CURRENT MOTORS** SPEED REDUCERS AND GENERATORS (Cont.) — Pages 50-61 **SPEED REDUCERS & GENERATORS** MODIFICATIONS AND ACCESSORIES FOR: (Cont.) — Pages 62-69 MODIFICATIONS CONTROL DIMENSIONS HOW TO SELECT AND APPLY MOTORS (Cont.) — Pages 96-113 HOW TO SELECT AND APPLY Electrical Types of Synchronous Motors......111-113 HOW TO IDENTIFY HOW TO SELECT A-C CONTROL HOW TO INSTALL MOTORS (Cont.) — Pages 125-132 HOW TO INSTALL HOW TO SERVICE MOTORS (Cont.) — Pages 133-139 HOW TO SERVICE General Overhauling of Motors......137-139 HELPFUL MOTOR INFORMATION (Cont.) — Pages 140-146 Standard Direction of Rotation of G-E Motors and Generators......144 Formulas and Data.....144 HELPFUL DATA 3

THE PURPOSE OF THIS CATALOG

YOU can buy from General Electric the right motor for the drive you have because General Electric has the most complete line of dependable motors on the market.

The objects of this book are:

- 1. To help you select, at low first cost, the motors best suited for your purposes.
- 2. To make it easy for you to get them promptly.
- 3. To facilitate and direct you in the most economical methods of installing and operating them.

This is but one of the services of which we hope you will take advantage. Near you are competent electrical engineers who know G-E equipment and who will gladly be of assistance to you. Warehouses throughout the country are stocked with G-E motors that are ready for prompt shipment. Fully equipped service shops, too, stand ready to live up to their name of service at a moment's notice.

Keep this catalog handy for your assistance.

HOW TO USE THIS BOOK

1. Obtaining the Motor

- (a) Keeping in mind the power available (a-c or d-c) and the job you want done, refer to the Pictorial Selector (pages 6-17) for the general kind or type wanted.
- (b) If necessary, refer to "How to Select and Apply Motors" for more complete information (pages 96 to 113).
- (c) Refer to the specific pages that describe the type wanted, and select the motor in accordance with the horsepower, speed, type, enclosure, and power desired.
- (d) Select the control wanted. (See pages 70 to 77.)
- (e) Follow ordering directions.

2. Planning for Use of the Motor

- (a) Refer to pages 78 to 95 for mounting dimensions and weights.
- (b) Select type of connection or driving means between motor and machine. See page 125 for assistance.
- (c) Arrange for feeder equipment based on fullload currents, code letters, etc. as shown on pages 143 and 145.

- (d) Check your plans with your local power company and electrical code or underwriters' inspectors.
- 3. Using the Motors
 - (a) Follow installation suggestions. (See pages 125 to 132.)
 - (b) Follow maintenance suggestions. (See pages 133 to 139.)

4. General Information

- (a) When special features are wanted, see "Modifications and Accessories," pages 62 to 69. Consult the nearest G-E sales office about any motor you have in mind that is not listed.
- (b) Prices are subject to General Electric's usual terms, as explained by its published terms of sale outlined on page 22.
- (c) Information as to warranty of quality and patent infringement will be found on page 22.
- (d) Definitions of motor terms appear on pages 140 to 142.
- (e) Helpful data is given on pages 142 to 146.

THE ADVANTAGES OF PURCHASING G-E MOTORS

THE work will be done economically, because General Electric has the right motor for any job.

Maintenance and upkeep have been proved to be small; that is, G-E motors are built to last.

Performance is dependable, because the motors have predetermined and tested operating characteristics.

Installation is easy, because of the many convenience features built into G-E motors.

Shipment is prompt—the more so, because General Electric has factories and district warehouses located in every section of the country.

Better motors for less money result from use of the many developments and improvements that have originated in General Electric laboratories.

Reliability is assured, because General Electric constantly tests motors, beginning with the selection of the raw material and continuing through the various stages of manufacture and after completion.

Engineering service is available, near at hand wherever your plant is situated, to help you select the motor best suited to your requirements.

General Electric is no newcomer in the motor business. Its long history of steady growth, the prestige of its name and of its products, and the comprehensiveness of its lines—these are factors that contribute to the unseen values which you purchase when you buy a G-E motor.

You get service—should your apparatus ultimately require repairs—from any one of a chain of service shops distributed throughout the country—shops that are equipped with every facility for returning your equipment to original factory condition promptly.

You can rest assured of always being able to get genuine G-E renewal parts, even years later, should you want or need them.

G-E motors are always acceptable, whether for original sale or for resale on a machine. A survey made by a disinterested, impartial agency asked industrial buyers: "What make of electric motor do you prefer?" The answers showed that preferences were distributed as follows:

General Electric	62%
Manufacturer A	21%
Manufacturer B	8%
Manufacturer C	5%
Manufacturer D	3%
Manufacturer E	1%

Pictorial Selector

POLYPHASE

FRACTIONAL-HORSEPOWER GENERAL-PURPOSE OPEN MOTORS

TYPE K, open, 40 C rise squirrel-cage induction motors.

See page 23,

WHERE TO USE: For all constant-speed, steady-running jobs, where ordinary surrounding conditions exist. Having a high starting torque, these motors are suitable for hard-to-start applications. They have a smooth accelerating ability for inertia loads, and have high maximum load-carrying capacity for emergencies.

WHAT RATINGS: Built from 1/8 to 3/4 hp; 860, 1140, 1725, and 3450 rpm at 60 cycles; also 50- and 25-cycle speeds; with either ball- or sleeve-bearing construction; standard voltages; 3- or 2-phase.

FEATURES: A motor built to give dependable, low-cost service. Dripproof construction. Strong frame, substantial base, cast-aluminum rotor winding. Bearings require oiling but once a year or greasing once every two years.

CONTROL: Manual, CR1061 or CR1062; automatic, CR7006 or CR7008.

POLYPHASE

FRACTIONAL-HORSEPOWER INDUSTRIAL AND MACHINE-TOOL TOTALLY ENCLOSED MOTORS

TYPE K, totally enclosed, 55 C rise ball-bearing industrial motors.

See page 24.

WHERE TO USE: These motors are built specifically to meet the requirements of machine-tool and similar industrial applications, particularly where frequent start-stop service, plugging duty, and metal-dust atmospheres are encountered, and where other than horizontal mounting may be needed.

WHAT RATINGS: Built in 1/4, 1/3, 1/2, and 3/4 hp at 1725 rpm, 60 cycles, 3- or 2phase voltages. 50-cycle and 25-cycle ratings also available. For d-c service, order Type BC construction for constant- and adjustable-speed duty. All are available with flange, face, or machined end-shield mounting.

FEATURES: Protected and firmly anchored Formex wire windings, rigid base and frame, ball bearings, convenient built-in conduit box, and many other features make these motors a worth-while purchase for industrial use.

CONTROL: Manual, CR1061 or CR1062; automatic, CR7006 or CR7008.

POLYPHASE

GENERAL-PURPOSE OPEN TRI CLAD MOTORS

TYPE K, open, 40 C rise squirrel-cage induction motors.

See page 25.

-

WHERE TO USE: For the large majority of industrial applications—pumps, fans, saws, lathes, line shafts, and the like. Where constant speed; normal, "snappy" starting ability; high load-carrying capacity for emergencies; and an efficient, quiet, and reliable electric drive is wanted. Its low starting current makes this motor widely accept-

able for full-voltage starting and, consequently, permits use of economical control. WHAT RATINGS: Built from 1 to 100 hp (below 1 hp, above 100 hp, and up to 15,000 hp in other than Tri-Clad design);450,514,600,720,900,1200,1800,3600 rpm at 60 cycles; 50- and 25-cycle speeds also; either ball or sleeve bearings; 110, 208, 220/-440, and 550 volts; 3- or 2-phase. Also multispeed motors (2, 3, or 4 of these speeds in one motor), if desired, and Type KG motors for high-starting-torque jobs, such as conveyors, loaded compressors, etc.; and Type KR motors for high slip, on fluctuating flywheel loads, rapid-reversing jobs, and the like.

FEATURES: Here is the motor that industry asked for-a streamline, protected, dependable standard motor. Cast-iron frame, and end shields with no openings in the upper portion. Insulated with Formex wire. Cast-aluminum rotor windings. Dynamically balanced. Convenient to mount; easy to maintain.

CONTROL: Full-voltage, manual, up to 5 hp, CR 1062; automatic, CR 7006 or CR 7008. Reduced-voltage, manual, CR1034; magnetic, CR7056.

for G-E Motors

SPLASHPROOF TRI CLAD MOTORS

TYPES K, KG, or KR, splashproof, 50 C rise motors.

See page 28.

WHERE TO USE: The motor to install in wet, splashy locations, such as sometimes exist in breweries; dairies; food-product, paper, and chemical plants, etc. Use where you may want to hose-clean the surrounding area regularly. Use in some outdoor locations where climate is mild and maintenance regular.

WHAT RATINGS: Built in types and ratings paralleling G-E open motors-in Tri-Clad construction to 20 hp, and in strong cast-iron construction of equivalent splashresisting ability in larger sizes.

FEATURES: The "cast-iron" answer to liquids and splashing which might make motor operation uncertain if not protected. Deflecting end shields, watertight conduit box, moisture-resisting insulation, shaft seal, and other features to give the protection needed.

CONTROL: Same as for open motors, perhaps with different enclosure.

TOTALLY ENCLOSED MOTORS — STANDARD AND EXPLOSION-PROOF

POLYPHASE

POLYPHASE

TYPES K, KG, or KR, totally enclosed or totally enclosed, fan-cooled, 55 C rise motorseither standard or explosion-proof construction. See page 29.

WHERE TO USE: When magnetic or abrasive dusts, extreme moisture or outdoor conditions, severe fumes or chemical conditions which are not explosive exist, use the standard construction.

For explosive-gas conditions no more hazardous than high-test gasoline, such as may exist in dry-cleaning plants, refineries, paint and varnish departments, etc., a construction is available that has been tested and labeled by the Underwriters' Laboratories Inc., for Class I, Group D conditions.

For explosive-dust conditions, such as may exist in flour mills, feed mills, grain elevators, etc., another totally enclosed construction is available that has been tested and labeled by the Underwriters' Laboratories Inc., for Class II, Group G, conditions.

RATINGS AND FEATURES: Built in types and ratings paralleling G-E open motors. Built in ratings of 1 to 600 hp at practically all speeds. These motors have the highest quality of protection that is given motors.

CONTROL: Same as for open motors, perhaps with different enclosure.

END-SHIELD-MOUNTED TRICLAD MOTORS

POLYPHASE

FACE-TYPE

For close-coupling of motors to ma-chines, pumps, etc. Many motors will fit on only a few standard mounting dimensions. Stud bolts from machine to motor must be used in mounting these motors. See page 31.

FLANGE-TYPE

Also for close-coupling to driven apparatus. Either stud bolts or through bolts from the motor to machine can be used in mounting these motors. Dimensions are standardized by NEMA. Motors either round-frame or foot-mounted.

See page 31.

Pictorial Selector

POLYPHASE

VERTICAL MOTORS, SHIELDED AND GENERAL-PURPOSE

TYPE K, vertical, 40 C rise, shielded-frame induction motors or general-purpose verticalTri-Clad motor (not shown.)See page 32.

WHERE TO USE: These motors are made for use on jet pumps, turbine pumps, agitators, atomizers, centrifuges, machine tools, irrigation projects, etc. Use when protection from falling objects or dripping liquids, or outdoor operation in mild climates, is desired. Use when base mounting is wanted. General-purpose motor also available for side-wall vertical mounting. Select high-thrust type if weight to be carried by shaft is considerable.

WHAT RATINGS: Built in ratings which duplicate those of G-E general-purpose horizontal open motors. Shielded motor has ring base and general-purpose motors are available with ring bases, tripod base, face-type base, or no base. Dimensions are standard. Solid shaft for most applications; hollow shaft with pin-type coupling for deep-well turbine pumps.

FEATURES: Attractive appearance, effective protection, high full-load speeds, ease of mounting and alignment, and interchangeability of many motors on a given mounting dimension are among the desirable features obtainable in this useful line of motors. **CONTROL:** Same as for open horizontal motors.

POLYPHASE

WOUND-ROTOR COLLECTOR-RING MOTORS

TYPE M, general-purpose, open, 40 C rise, constant- or adjustable-varying-speed motors.

WHERE TO USE: On applications needing adjustable speed, but where some speed change with fluctuating load is permissible, this motor, with proper control, is useful. If low starting current is imperative, and ability for extra-heavy starting and smooth acceleration is desired, this motor, properly controlled, is the best for the job.

WHAT RATINGS: In general, the ratings parallel those of comparable G-E squirrelcage general-purpose motors. Also available with protective covers and in totally enclosed, standard construction.

FEATURES: A sturdy, long-lived construction. Extra features: large-cross-sectioned brushes; smooth, round, concentric-cast-alloy "slip" rings; adjustable-tension bronze brush holders.

CONTROL: Manual, CR3204; magnetic, CR7022 or CR7029.

POLYPHASE

SYNCHRONOUS MOTORS, GENERAL-PURPOSE

See page 34.

TYPES TS or QS (3- or 2-phase), general-purpose, high- or low-speed.

See page 35.

where TO USE: (1) Where good power factor or power-factor improvement is desired. (2) Where maximum efficiency is desired for steady, continuous loads of 75 hp or larger. (3) Where exact speeds must be maintained.

(4) Where motor speeds less than 500 rpm in sizes larger than 20 hpare wanted. **WHAT RATINGS:** Horsepowers, 20 to 7500. Speeds, 514 to 3600 (highspeed) and 80 to 514 (low-speed). Either unity-power-factor or 0.8 leadingpower-factor ratings obtainable. Open, dripproof, or enclosed construction. Many optional varieties of mounting arrangements and starting combinations.

FEATURES: Starting, pull-in, and pull-out torques can be selected to suit exactly each application, such as pumps, compressors, fans, motor-generator sets, ball mills, line shafts, etc. Compact, proved design.

CONTROL: Reduced-voltage, magnetic, CR7061; semimagnetic, CR7062. Full-voltage, magnetic, CR7065; semimagnetic, CR7066.

FRACTIONAL-HP GENERAL-PURPOSE SPLIT-PHASE OPEN MOTORS

TYPE KH, open, split-phase induction motor.

WHERE TO USE: For constant-speed, moderate-torque applications where high starting torque is not a requisite. Typical applications are oil burners, ironers, office appliances, instruments, small machine tools, floor surfacers, etc.

for **G-E** Motors

WHAT RATINGS: Built in 1/60 to 1/3 hp at 1800 rpm; 3600, 1800, 1200, and 900 rpm, 60 cycles; and in the corresponding 50-cycle ratings. Available in either ball- or sleeve-bearing designs at standard voltages. Enclosed motors also available.

FEATURES: Economical to buy. Streamline, dripproof protection; sturdy frame and assembly; dependable, long-lived built-in transfer switch; solid base; can be furnished with resilient base, or belt-tightener base and built-in Thermo-Tector protection.

CONTROL: Manual, CR1061 or CR1062; automatic, CR7006 or CR7008.

600, 1800, 1200, and gs. Available in either notors also available. tion; sturdy frame and

See page 38.

FRACTIONAL-HP GENERAL-PURPOSE OPEN CAPACITOR-MOTORS

See page 39.

SINGLE-PHASE

TYPE KC, open capacitor-type induction motor.

WHERE TO USE: For constant-speed applications where relatively high starting torque is required, or where minimum operating noise and minimum radio intereference are essential. Typical applications are commercial-refrigeration units, fans, air-conditioning equipment, etc.

WHAT RATINGS: Built in ratings of 1/8 hp, 1800 rpm, up to and including 1 hp, 3600 rpm, 60 cycles, and in the corresponding 50-cycle ratings; 3600, 1800, 1200, and 900 rpm. Available in either ball- or sleeve-bearing designs at standard voltages. Enclosed and explosion-proof motors also built.

FEATURES: The use of dependable motor-mounted G-E capacitors adds extra starting ability, quiet operation, and compact design to the many other mechanical benefits built into all G-E fractional-horsepower motors.

CONTROL: Manual, CR1061 or CR1062; automatic, CR7006 or CR7008.

GENERAL-PURPOSE OPEN TRI/CLAD CAPACITOR-MOTORS

SINGLE-PHASE

TYPES KC and KCJ, open, 40 C rise capacitor-type induction motors. **See page 39. WHERE TO USE:** In applications that require dependability, quiet operation, free-

dom from radio interference, and a wide choice of torque requirements. The KC (normal-torque) is designed for fans, blowers, centrifugal pumps, and other applications requiring moderate starting torques. The KCJ (high-torque) is designed for applications requiring high starting torques, such as compressors, loaded conveyors, reciprocating pumps, etc.

WHAT RATINGS: Type KC is available from $\frac{1}{2}$ hp at 900 rpm up to and including 5 hp at 3600 rpm. Type KCJ is available from 1 to 3 hp at 1800 rpm. Available in either ball- or sleeve-bearing designs at standard voltages. Furnished for both 60-cycle and 50-cycle operation.

FEATURES: Built with extra protection and pleasing contours. Dependable electrolytic or Pyranol capacitor compactly mounted in end shield or on frame. Long-lived transfer mechanism. Many convenience features.

CONTROL: Manual, CR1062; automatic, CR7006 or CR7008.

SINGLE-PHASE

Pictorial Selector

SINGLE-PHASE

REPULSION-INDUCTION OPEN MOTORS

TYPES SCR (standard), SCA (reversible), open induction motors.

See page 41.

WHERE TO USE: Use Type SCR motors when a single-phase, constant-speed motor is desired in the larger ratings where capacitor-motors are not yet available. Use Type SCA motors when a reversible, constant-speed, single-phase drive is wanted.

WHAT RATINGS: Types SCR and SCA built for 50- or 60-cycle operation: Type SCR from 1 hp at 900 rpm to 10 hp at 1800 rpm, and Type SCA from ½ hp at 900 rpm to 10 hp at 1800 rpm. Both types available at standard voltages in either ball- or sleeve-bearing design.

FEATURES: High starting and accelerating torques. High full-load speed. Built-up, solid, long-wearing commutator. Rigid, adjustable brush assembly. Light weight; easy to install.

CONTROL: Manual, CR1062; automatic, CR7006. In addition, CR1026 control is available for reduced-voltage starting of the Type SCR; and, for the Type SCA, CR3300 reversing switches (manual) and CR7009 (magnetic) switches can be obtained.

SINGLE-PHASE

SHADED-POLE MOTORS FOR APPLIANCES AND SMALL DEVICES

TYPE KSP—Shaded-pole, 3.5, 5, 12 watts; 110 volts, 60 cycles.

WHERE TO USE: These small constant-speed motors can be used to drive practically any small device that does not require a high starting torque, such as small fans, advertising devices, instruments, toys, motion-picture projectors, and the like. It is a handy, inexpensive little motor to have for odd jobs; and makes a fine gift to the boy who is mechanically minded.

FEATURES: It operates quietly, is free from vibration, and does not interfere with radio reception. Generous oil reservoirs and oil returns provide adequate lubrication; only occasional oiling is required. It can be plugged into the nearest lighting socket or service outlet. More information can be had by asking for Bulletin GEA-1844.

SINGLE-PHASE OR D-C

UNIVERSAL, VARYING-SPEED SERIES MOTORS

TYPE P-Universal series, 1/50 to 1/5 hp, 110 or 220 volts, a-c/d-c.

WHERE TO USE: These are small, compact, high-speed motors for use on food mixers, sirens, electric cleaners, office devices, sewing machines, paint sprayers, and for similar applications where duty is intermittent, where constant speed is not required, and where the load is permanently connected and fairly constant. Generally, these motors are purchased as "motor parts," and built into the tool or device by the manufacturer. (See "Series-motor Parts," page 14.)

FEATURES: Because they are compact, powerful, yet light in weight, they are excellent for the applications listed above. They operate at very high speeds at no load, with application of load reducing speed, and are sturdily built for this service. The motors have high starting torque. Detailed information is given in Publications GEA-1942 and GEA-1988.

TOTALLY ENCLOSED MOTORS, STANDARD AND EXPLOSION-PROOF

SINGLE-PHASE

TYPE SCR, totally enclosed, fan-cooled, 55 C rise motor—either standard or explosion-proof. See page 41.

for **G-E** Motors

WHERE TO USE: Where conditions exist that are similar to those described for enclosed polyphase motors on page 7.

WHAT RATINGS: Built for 60-cycle operation from $\frac{1}{2}$ hp at 900 rpm to 10 hp at 1800 rpm. Ball-bearing construction; standard voltages; 3600, 1800, 1200, 900 rpm. Also 50-cycle speeds. Motor construction for explosive-gas conditions, Class I, Group D, or explosive-dust conditions, Class II, Group G, available.

FEATURES: All motor operating parts are enclosed in one unit. Protection prolongs life and promotes safe operation. High starting torques and full-load speeds, sealed-in leads, protected cooling fan, are some additional desirable features.

CONTROL: Same as for open motors.

VERTICAL SINGLE-PHASE MOTORS

SINGLE-PHASE

TYPE KC, (larger sizes), **Type KH** (smaller sizes), vertical, shielded, dripproof ball-bearing motors.

WHERE TO USE: The principal use for these motors is on water-pump assemblies for supplying running water to homes, farms, and for irrigation. Most motors are furnished as part of the complete pump. The motors are suitable for outdoor operation and normal-torque applications.

WHAT RATINGS: Built from 1/4 hp to 3 hp at 1800 rpm or 5 hp, 3600 rpm, standard voltages, all 60- and 50-cycle speeds, standard ring base.

FEATURES: Streamline, compact appearance, protected construction. Starting switches and capacitors are snugly protected inside the motor. Mounting is ring base with widely acceptable mounting dimensions. Many ratings will fit on same pump casing or other casting. These motors are quiet and dependable.

CONTROL: Same as for open horizontal motors.

FRACTIONAL-HORSEPOWER GENERAL-PURPOSE CONSTANT-SPEED D-C OPEN MOTORS

DIRECT-CURRENT

TYPE BC, open, 40 C rise, compound-wound direct-current motor.

See page 44.

WHERE TO USE: For general-purpose constant-speed applications where the power supply is d-c, or where the necessity of especially fine speed adjustment warrants the use of d-c motors plus a-c/d-c conversion apparatus.

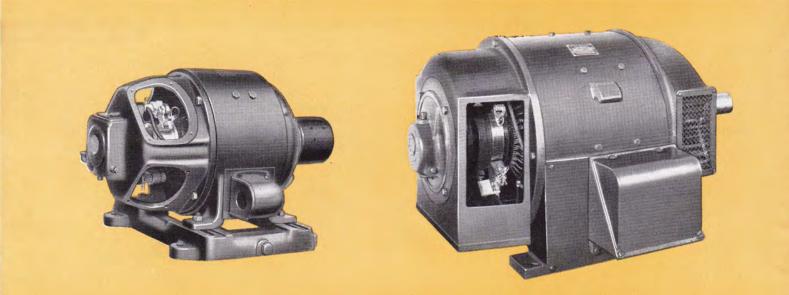
WHAT RATINGS: Built compound-wound in constant-speed design from 1/20 hp, 1725 rpm, up to and including 1 hp, 3450 rpm. Also available as shunt- or series-wound motors. Furnished with either ball or sleeve bearings in standard voltages.

FEATURES: Solidly bonded, compact armature; filter capacitor for radio-interference suppression, compound-wound for stable operation. Long-lived commutator and brushes.

CONTROL: Manual, full-voltage, CR1061 or CR1062.

Pictorial Selector RAL-HORSEPOWER, GENERAL-PURPOSE, D-C OPEN MOTORS CONSTANT-SPEED

DIRECT-CURRENT CONSTANT-SPEED


INTEGRAL-HORSEPOWER, GENERAL-PURPOSE, D-C OPEN MOTORS

TYPES B and CD; shunt-, series-, and compound-wound; open, 40 C rise. See page 45. **WHERE TO USE:** Where the power supply is d-c, or for applications where it is desirable to obtain a large variety of accurately controllable speeds over speed ranges of less than 3:1 from a constant-voltage source. With adjustable-voltage supply, these motors can be made part of a flexible system that will give rapid reversal, change of speed, or uniform acceleration with an economical control system.

WHAT RATINGS: Type B in Frames 203-284 and Type CD in Frames 66-95, from 1/2 hp, at 850 rpm up to and including 60 hp at 1750 rpm. Type CD in the "1000 Series" frames also available from 15 hp at 500 rpm up to and including 20 hp at 1750 rpm. Furnished in many standard voltages with either ball or sleeve bearings.

FEATURES: These are heavy-duty motors, made for rough service in mines, factories, ships, etc. They feature: rolled-steel frames; compensating-tension brush holders; built-up, rigid commutators; and solidly bonded, conservatively insulated field and armature coils.

CONTROL: See below.

DIRECT-CURRENT ADJUSTABLE-SPEED

ADJUSTABLE-SPEED

TYPES B and CD, shunt-, series-, and compound-wound; open; 40 C rise. See page 45. **WHERE TO USE:** For applications where it is desirable to obtain a large variety of accurately controllable speeds over speed ranges of more than 3:1. These motors may be rated on a constant-horsepower, tapered-horsepower, or one-hour basis, thus providing great flexibility to suit a wide variety of applications.

WHAT RATINGS: Type B in Frames 203-284 and Type CD in Frames 66-95, from 1/2 hp at 850-3400 rpm up to and including 15 hp at 500-1800 rpm. Type CD in the "1000 Series" frames also available from 10 hp at 300-1200 rpm up to and including 200 hp at 200-800 rpm. Many standard voltages with either ball or sleeve bearings.

CONTROL:

Manual

- CR1003, starting duty only.
- CR 1203, starting duty & speed regulation. CR 1220-B1, machine duty—speed regu-
- lation by armature control
- CR1224-B1, fan duty-speed regulation by armature control
- CR1240-B1, machine duty-speed regulation by armature and field control
- CR1244-B1, fan duty-speed regulation by armature and field control

Magnetic

CR4061, all services up to 10 hp, 115 volts, or 20 hp, 230 volts

CR4065, nonreversing

CR4066, nonreversing, dynamic braking

CR4068, reversing, dynamic braking

G-E Motors

D-C MOTOR ENCLOSURES

ENCLOSURES AVAILABLE AND WHERE TO USE

See page 48.

DIRECT-CURRENT

DIRECT-CURRENT

To meet the many different kinds of adverse conditions to which direct-current motors are subjected, General Electric has supplemented the heavy-duty open motor with a complete line of protected and enclosed machines.

ENCLOSURE

- 1. Dripproof When dripping liquids may exist.
- 2. Protected

4. Splashproof

5. Totally enclosed

fan-cooled 7. Explosion-proof

8. Class BM motors

- When objects may fall or bounce near by. 3. Dripproof, protected Under a combination of above conditions.
 - Where splashing or hosing down may occur.
 - Where extreme dust, corrosive atmosphere, moisture, Totally enclosed, etc., may prevail.

WHERE TO USE

- For explosive-gas conditions classified as Class I, Group D.
- Built to the specifications of the Bureau of Mines for protection in coal mines or collieries.

CONTROL: Types same as open motors, with enclosures as desired.

D-C CRANE AND HOIST MOTORS

TYPE CO, totally enclosed, series- and compound-wound, rated 55 C rise in either 30-min or 15-min intermittent ratings.

WHERE TO USE: These are heavy-duty motors designed specifically for average crane and hoist jobs, with their frequent starts and stops, but with the necessity for intermittent ratings only.


WHAT RATINGS: From 3 to 130 hp at standard speeds and voltages in either sleeve- or ball-bearing construction.

CONTROL: A variety of controllers, both manual and magnetic, is available.

D-C MILL MOTORS

DIRECT-CURRENT

TYPES MD (totally enclosed) and MDP (protected, self-ventilated) series-, shunt- or compound-wound; 75 C rise. TYPE MD rated intermittently at either 30 min or 60 min; TYPE MDP rated either continuous or 60 min intermittent.


WHERE TO USE: These are extra-heavy-duty motors designed specifically for the severe operating conditions met in steel-mill auxiliaryequipment service. They may also be used in place of Type CO motors on very severe crane and hoist applications where the 75 C temperature rating is wanted. Type MDP is specifically a pump motor, and is used for extremely severe applications.

WHAT RATINGS: Standard speeds. Type MD at 230 volts from 5 to 660 hp; at 550 volts from 5 to 330 hp. Type MDP at 230 volts from 7 to 645 hp; at 550 volts from 7 to 330 hp.

CONTROL: A variety of controllers, both manual and magnetic, is available.

Pictorial Selector

SPEED REDUCERS CLASS I PACIFIC, GENERAL ELECTRIC MOTORIZED, SPEED REDUCERS

TYPES: In fractional-horsepower sizes, there are Types K, KH, and KC for a-c service, and Type BC, compound-wound, for d-c service. In integral-horsepower sizes, there are Types K, KG, KR, M, and KC for a-c service, and Type B, shunt-wound, for d-c service. See page 50.

WHERE TO USE: The Class I motorized speed reducer is designed for applications where the load is reasonably constant and must be driven at low speed. It combines a normal-speed motor with a built-in, helical reduction gear. This combination results in an efficient, sturdy, self-contained unit that is often the most economical means of obtaining a dependable source of power for the operation of many types of machinery at a large variety of standard speeds below 800 rpm.

WHAT RATINGS:

Types and Horsepowers			Output Speeds at Full Load (= 3 Per Cent —AGMA & NEMA Standards				
Fractional-hp* Integral-hp*		ractional-hp* Integral-hp* Revolutions per Minute, 1-75			6 U.a.		
Type	Нр	Type	Нр	Ke	volutions per	Minute, 1-7	бнр
к	¹ / ₈ to ³ / ₄	K	1 to 50	780	280	100	37
кн	1/8 and 1/6	KG	3 to 50	640	230	84	30
кс	½ to 3/4	м	1 ½ to 50	520	190	68	25
BC	1% to 3/4	В	1 to 7 ½ hp	420	155	56	20
		KC	1 to 3 hp	350	125	45	16.5
							13.5

*Standard voltages and frequencies.

All of the above integral-horsepower ratings are available at standard output speeds. The fractional-horsepower ratings are available with either a coaxial-shaft construction or with a worm-gear drive having a right-angle shaft, at output speeds from 780 to 13.5 rpm. All types and ratings are available in totally enclosed, explosion-proof, splashproof, and vertical constructions, if desired.

FEATURES: A complete line of Pacific, General Electric Motorized, Speed Reducers is available. They are unusually quiet and easy to install, and promote safety in any plant by eliminating belts, etc. Furthermore, they save space, minimize shutdowns, and reduce power and maintenance costs.

CONTROL: Same as for standard motors.

GENERAL

SERIES-MOTOR PARTS, A-C/D-C

FOR PORTABLE DEVICES portable tools, electric cleaners, motion-picture projectors, and similar applications.

> **FOR BUSINESS MACHINES**— A compact, powerful motor with governor control for office appliances and projectors.

G.E. co-operates closely with manufacturers making portable tools and office devices. Ask for Publication GEA-1988.

for G-E Motors

GENERAL

GENERAL

SELF-STARTING SYNCHRONOUS INDUCTOR MOTORS

TYPE SMY—Self-starting synchronous inductor motors.

See page 42.

WHERE TO USE: Self-starting synchronous inductor motors for electric instruments, indicating instruments, recording instruments, small regulating or controlling devices, remote-control devices, and other applications where a long-lived source of low-speed torque or power at constant speed is needed.

WHAT RATINGS: Single-phase, 115 volts, 60 cycles.

20 Frame		100 rpm
20 Frame plus	48 oz-in.	1 r pm
built-in gear	24 oz-in.	2 rpm
reducer) 12 oz-in.	4 rpm
50L Frame	20 oz-in	75 rpm
50H Frame	40 oz-in	75 rpm
54H Frame	75 oz-in	75 rpm

FEATURES: These are compact, quiet, useful motors. They have alnico magnet fields, slotted rotor and stator for synchronous speed. Can't overheat. Instantaneous start. No starting-current surge. Ask for Bulletin GEA-3307.

A-C TEXTILE MOTORS

LOOM MOTORS

Totally enclosed, dusttight, efficient loom motor. Ask for Bulletin GEA-1556.

SCREENLESS OPEN MOTORS

Screenless open motor designed for positive expulsion through motor of lint-laden atmospheres. Ask for Bulletin GEA-1557.

A-C ADJUSTABLE-CONSTANT-SPEED MOTORS

GENERAL

Type BTA motors were developed by General Electric to cover that wide field of application where adjustablespeed a-c motors with constant-speed characteristics are beneficial. Type BTA motors are generally built for a 3:1 speed range, and are rated on a constant-torque basis, with the horsepower output directly proportional to speed, but they can also be furnished in other speed ranges. In standard ratings, this motor is available in sizes 50 hp and smaller. Ask for Publication GEA-712.

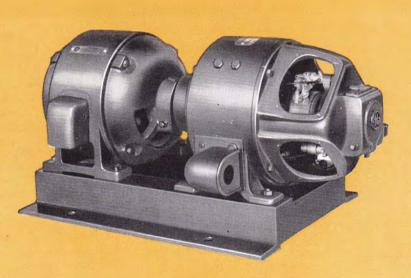
Pictorial Selector-

GENERAL

A-C GENERATORS

One of many G-E custom-built a-c generators for gas- or diesel-engine drive, or for frequency changing.

D-C GENERATORS

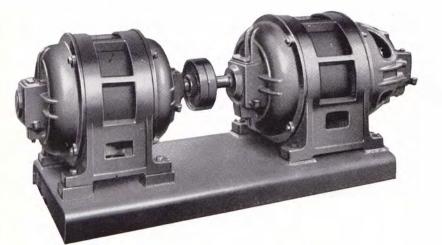

See page 61.

Wherever a d-c source of power is needed, there is a G-E generator that will match the requirements. Information on request.

GENERAL

MOTOR-GENERATOR SETS

As a separate means of changing from one power supply to another, compact and complete G-E motor-generator sets function most dependably and efficiently. See page 60.



-

for G-E Motors

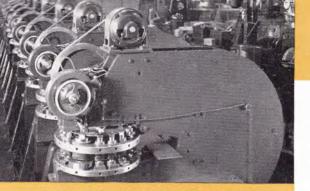
INDUCTION FREQUENCY CONVERTERS

GENERAL

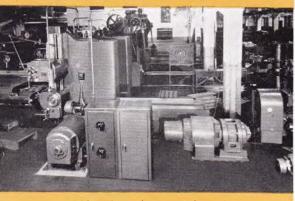
To supply high-frequency polyphase power most economically for driving hand tools, buffers, drills, etc., use G-E Type MM induction frequency converters. Ask for Publication GEA-750.

SHELL-TYPE MOTORS

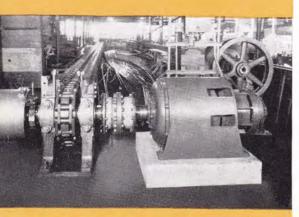
GENERAL

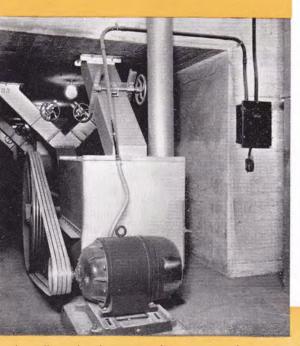

GENERAL

For use in conjunction with induction frequency converters, at frequencies as high as 500 cycles, or on conventional frequencies, a complete line of shell-type motors is available in a widerange of horsepower ratings. The advice of General Electric engineers, based on years of experience in applying and co-ordinating these motors and converters, can be obtained at the nearest G-E office.


G-E SPEED VARIATOR

A compact, complete unit—motor, motorgenerator set, and control—which permits adjustable-speed drive from polyphase power. Gives the speed desired for best production on machine tools, printing presses, textile machines, test stands, etc.




A battery of machines with Tri-Clad motors

A variable-voltage d-c-motor planer drive

A wire-drawing equipment with gear-motor drive

FUNDAMENTAL STEPS TO

Following is an outline of considerations which may influence the selection of a motor. A more complete guide form can be found on page 96. Naturally, special problems and conditions may be beyond the scope of these guides. General Electric application engineers are daily helping solve new problems successfully.

Find what power is available, or is desired.* Polyphase (3- or 2-phase). Single-phase; or d-c. Voltage.

Frequency (if alternating current).

* Motor-generator sets are available to convert to the power desired.

2. Select horsepower needed to drive load.

- (a) By asking manufacturers of machines to be driven what horsepower is required.
- (b) By temporarily connecting or belting a motor of a size larger than estimated would be needed, and then measuring the power required by means of wattmeter.

 $Hp = \frac{Watts \ measured \times \ estimated \ efficiency \ of \ motor.}{746}$ $Hp = \frac{Torque \times speed \ of \ shaft \ (rpm)}{5280}$

- (c) By consulting handbooks and calculating the power required.
- (d) If load is fluctuating or intermittent, or reversing, consult a G-E sales engineer.

3. Select speed of motor.

- (a) By asking manufacturers of machines to be driven.
- (b) By calculating pulley and gear ratio (hp remains the same).
- (c) Consider standard speeds of induction motors for direct drive.
- (d) Consider standard speeds of gear-motors or speed reducers for low-speed direct drive.
- (e) Consider if different speeds of multispeed motor will improve results desired.
- (f) Consider if adjustable speed of Speed Variator, adjustableconstant-speed a-c motor, direct-current motor, or woundrotor motor would be beneficial.

4. Check starting torque necessary.

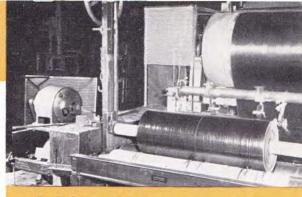
- (a) By spring balance at end of pipe wrench applied to shaft to be driven. Torque = spring-balance measurement in pounds, times the distance in feet from center of shaft to where spring balance is fastened to wrench.
- (b) By checking manufacturer of machines to be driven. Divide this torque by the torque needed for horsepower required. See 2(b).

TAKE IN SELECTING MOTORS

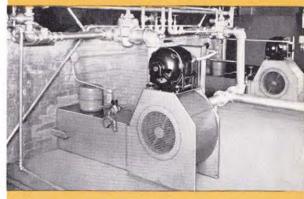
If the ratio is around 1.25-1.75 or less, use normal-startingtorque motors (if induction motors are to be used).

If the ratio is 2.0 or more, use high-starting-torque motors (if induction motors are to be used).

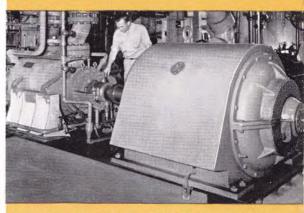
5. Examine surroundings and type of drive, and select proper enclosure.

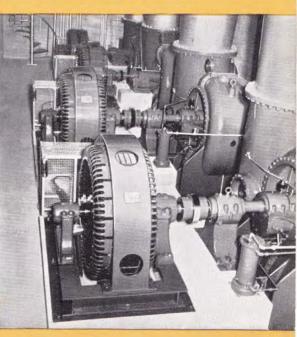

- (a) If ordinary industrial conditions, use open motor.
- (b) If splashing liquids or moisture exist, use splashproof motors.
- (c) If excessive conditions of moisture, fumes, etc., are prevalent, use totally enclosed, fan-cooled motors, or open motors with special insulation.
- (d) If outdoors in mild climate, use splashproof motors, but regular check will have to be made.
- (e) Best motor for outdoors, all climates—totally enclosed, fancooled (extreme cold may necessitate heaters for lubricant).
- (f) If exposed to explosive-gas atmosphere, no more hazardous than gasoline, use motors built for conditions identified as Class I, Group D.
- (g) If exposed to explosive-dust atmosphere, no more hazardous than flour, use motors built for conditions identified as Class II, Group G.

6. Determine type of bearing.


- (a) Sleeve bearings for horizontal operation.
- (b) Ball bearings, if preferred, and to take end thrust.
- (c) Ball bearings, if motor is tilted or vertical.
- 7. Consider capacity of power line. (See 1.)
 - (a) Check with power company the permissibility of starting motors at full voltage.
 - (b) Investigate advantage of improving power factor by adopting a synchronous motor as the drive.
- 8. Having done these, check G-E Pictorial Selector, pages 6-17, and determine type.
- 9. Specify:

Туре	Phase	Mounting arrangement					
Horsepower	Frequency	Speed range, if variable					
Speed	Enclosure	Shunt-, compound-, or series-					
Voltage	Bearings	wound, if d-c					


10. Order from the salesman who gave you catalog, or directly from the nearest G-E office.


Tri-Clad motor driving a paper-coating machine

Tri-Clad motors and modern industrial stoker

A 800-hp, 3600-rpm, boiler-feed-pump motor

Synchronous motors driving irrigation pumps in Texas

SUMMARY OF PRINCIPAL TYPES

TABULATED BY POWER SUPPLY

POLYPHASE

Fractional-hp Motors

Type K—General-purpose. Type M—Wound-rotor.

Integral-hp Induction Motors

Type K—Normal-starting-torque, low-starting-current.

Type KG—High-starting-torque, low-starting-current.

Type KR—High-starting-torque, low-starting-current, high-slip.

Type KE—Quiet-operating elevator motors.

Type M—Wound-rotor, adjustable-varyingspeed.

Type BTA—Commutator-type, adjustable-constant-speed.

Integral-hp Synchronous Motors

Type SK—Reluctance (small-hp).

Type TS—High- and low-speed (large-hp).

Integral-kw A-c Generators

Type A—Revolving-armature, high-speed.

Type ATB—Revolving-field.

Type MM—Two-unit induction frequency converters.

Type MMA—Single-unit induction frequency converters.

SINGLE-PHASE

Fractional-hp Motors

Type KSP—Shaded-pole.
Type P—Series, universal.
Type KH—Split-phase, normal-starting-torque.
Type KC—Capacitor-start, high-starting-torque.
Type KCP Permanent-split-capacitor, low-starting-torque.
Type BA—Series-motor parts.
Type SMY—Reluctance, low synchronous speed.

Integral-hp Motors

Type KC—Normal-starting-torque, capacitor. Type KCJ—High-starting-torque, capacitor. Type SCR—Repulsion-induction. Type RB—Adjustable-varying-speed, repulsion. Type SCA—Reversible, repulsion-induction.

DIRECT-CURRENT

Fractional-hp Motors

Type BC—Shunt-wound. Type P—Series, universal.

Integral-hp Motors

Types B & CD—Shunt, contant-speed.
Compound, constant-speed; shunt-wound adjustable-speed; series, varying-speed.
Type MD—Mill-type, totally enclosed motors.
Type MDP—Mill-type, protected self-ventilated motors.
Type CO—Heavy-crane-duty motors.

Integral-kw D-c Generators

Types B & CD—High-speed generators. Type LDR—Low-speed generators. Type MPC—High- and low-speed generators, larger ratings.

Type MCF—Compensated-winding, large-size generators.

OF G-E MOTORS AND GENERATORS

PRINCIPAL TYPES OF ENCLOSURES AVAILABLE FOR G-E MOTORS

Conditions		POWER SUPPLY	
Around Motor	Polyphase	Single-phase	Direct-current
Normal service	Open	Open	Open
Flying objects and dripping liquid	Open, f-hp sizes; Tri-Clad, 1-100 hp; Dripproof, larger	Open, f-hp sizes; Tri-Clad, integral-hp capacitor; Dripproof-protected, repulsion-ind.	Open, f-hp; Protected, integral-hp; Dripproof-protected, integral-hp
Splashing, hosing	Splashproof	Splashproof	Splashproof
Extreme dust or Corrosive fumes or Extreme moisture, acids, or alkalis	Totally enclosed to 3 hp; Totally enclosed, fan-cooled to 600 hp; Totally enclosed, self-ventilated; Totally enclosed, surface-cooled	Totally enclosed, f-hp Totally enclosed, 1 to 3 hp—Type SCR only Totally enclosed, fan-cooled, Type SCR only	Totally enclosed to 3 hp Totally enclosed, fan-cooled to 60 hp Totally enclosed, separately venti- lated
Outdoor mild climates	Enclosed, waterproof, f-hp; Splashproof, integral-hp	Enclosed, waterproof, f-hp; Splashproof, integral-hp	Enclosed, waterproof, f-hp; Splashproof, integral-hp
Outdoor damp and cold	Enclosed, waterproof, f-hp; Totally enclosed to 3 hp Totally enclosed, fan-cooled to 600 hp	Enclosed, waterproof, f-hp; Totally enclosed to 3 hp, Type SCR only Totally enclosed, fan-cooled, Type SCR only	Enclosed, waterproof, f-hp; Totally enclosed, waterproof to 3 hp Totally enclosed, fan-cooled, water- proof
Explosive gases	Explosion-proof for Class I, Group D, conditions	Explosion-proof for Class I, Group D, conditions, Type SCR only	Explosion-proof for Class I, Group D, conditions
Explosive dusts	Motors for Class II, Group G, con- ditions	Motors for Class II, Group G, con- ditions, Type SCR only	Motors for Class 11, Group G, condi- tions
Coal dust and gases in mines	Class BM motors—inspected and tested by Bureau of Mines		Class BM motors—inspected and tested by Bureau of Mines

G-E MOTOR TYPES BY SPEED CLASSIFICATIONS

Speed		POWER SUPPLY		
Classification	Polyphase Instant-speed Synchronous, Types TS and SK Instant-speed Squirrel-cage, Types K, KG; Wound-rotor, no regulating resistance, Type M Instant-speed Squirrel-cage, Type KR; Wound-rotor, some regulating resistance, Type M instant-speed Squirrel-cage, Type KR; Wound-rotor, some regulating resistance, Type M instant-speed Wound-rotor, Type M, with secon ary control ijustable-varying-speed Brush-shifting motor, Type BTA; G-E Speed Variator; Squirrel-cage motors with variable frequency supply Itispeed Two-winding and consequent-pol wound, squirrel-cage sh-speed Squirrel-cage, high-frequency, Type	Single-phase	Direct-current	
Constant-speed	Synchronous, Types TS and SK	Synchronous inductor, Type SMY	Flat-compounded	
Constant-speed (close regulation)	Wound-rotor, no regulating resis-	Split-phase, Type KH; Capacitor Types KC, KCJ, KCP; Repulsion-induction,TypesSCR,SCA	Constant-speed motor	
Constant-speed (wide regulation)	Squirrel-cage, Type KR; Wound-rotor, some regulating resist.		Compounded, over and under	
Varying-speed		Universal, Type P	Universal, Type P	
Adjustable-varying-speed	Wound-rotor, Type M, with second- ary control	Brush-shifting; repulsion-induction, Type RB	Series-wound motor; Constant-speed motor, arm. control	
Adjustable-constant-speed	G-E Speed Variator; Squirrel-cage motors with variable-	Permanent-split capacitor-motor with regulator and tapped winding	Adjustable-speed motor; Shunt motor with adjustable-voltage supply	
Multispeed	Two-winding and consequent-pole- wound, squirrel-cage	Multispeed capacitor-motor	·····	
High-speed	Squirrel-cage, high-frequency, Type KT built-in motors	Universal, Type P	Universal, Type P	
Low-speed	Gear-motors or speed reducers; Synchronous motors, Type TS	Gear-motors or speed reducers; Synchronous inductor, Type SMY	Gear-motors or speed reducers	

MOTORS AND CONTROL

The apparatus described in this catalog will be sold subject to the Company's standard domestic terms of sale.

STANDARD DOMESTIC TERMS OF SALE

Prices: Prices are subject to change without notice. This catalog is prepared to supply general information and is not a quotation or offer to sell on the part of the *Company*. Information as to current prices can be obtained from the nearest General Electric sales office. The minimum billing charge shall be \$1.00 plus transportation charges.

Boxing: Prices include boxing or packing for domestic shipment.

Discounts: Discounts are allowed on orders for GO-7 moto'rs (or GO-10 control) exceeding \$500. For further details, refer to the *Company* at time of purchase.

Payment: Cash in full within 30 days from date of shipment.

If, in the judgment of the *Company*, the financial condition of the *Purchaser* at any time does not justify continuance of production or shipment on the terms of payment specified, the *Company* may require full or partial payment in advance.

Pro rata payments shall become due as shipments are made. If shipments are delayed by the *Purchaser*, payments shall become due from date when the *Company* is prepared to make shipment. If manufacture is delayed by the *Purchaser*, payment shall be made based on the contract price and per cent of completion. Apparatus held for *Purchaser* shall be at the risk and expense of the *Purchaser*.

Title: The *Company* reserves the right to retain title to any apparatus sold and to have such apparatus remain personal property until all payments shall have been made in full in cash.

Taxes: The amount of any present or future sales or other similar tax applicable to the apparatus sold shall be added to the purchase price and shall be paid by the *Purchaser* in the same manner and with the same effect as if originally added thereto.

Delivery: Delivery shall be made f.o.b. point of shipment, transportation to any railroad destination in the U.S.A. prepaid free of expense to the *Purchaser*, provided the *Company* is allowed to select:

- 1. The point of origin of shipment.
- 2. The method of transportation.
- 3. The routing of shipment.

Additional delivery expense incurred will be paid by the *Purchaser*.

Shipping dates supplied by the *Company* are approximate, are subject to intervening requirements of the National Defense Program or of any war in which the United States may be engaged, and are based on prompt receipt of all necessary information at the factory. In case of delay in furnishing complete information, dates of shipment may be extended for a reasonable time based on conditions at the factory.

The *Company* shall not be liable for delay in delivery due to causes beyond its reasonable control or due to acts of God, acts of the *Purchaser*, fires, strikes, floods, epidemics, quarantine restrictions, war, insurrection or riot, civil or military authority, compliance with priority orders or preference ratings issued by the Government, freight embargoes, car shortages, wrecks or delays in transportation, unusually severe weather, or inability to obtain necessary labor, materials, or manufacturing facilities due to such causes, and in the event of any such delay the date of delivery shall be extended for a length of time equal to the period of the delay. The *Company* shall not be liable in any event for special or consequential damages due to delay in delivery.

Warranty: The *Company* warrants that the apparatus sold will be of the kind and quality described in the specifications, and no other warranty, except of title, shall be implied. The conditions of any tests shall be mutually agreed upon and the Company shall be notified of, and may be represented at, all tests that may be made. If any failure to comply with the specifications appears within one year from the date of shipment, the Purchaser shall notify the Company thereof immediately and the Company shall thereupon correct the defect, or defects, by repair, or by replacement f.o.b. factory of the defective part or parts. But if the apparatus is installed or its installation supervised by the *Company*, said one year shall run from the completion of installation provided same is not unreasonably delayed by the Purchaser. The liability of the Company (except as to title) arising out of the supplying of said apparatus or its use, whether on warranties or otherwise, shall not in any case exceed the cost of correcting defects in the apparatus, and upon the expiration of said one year, all such liability shall terminate.

It is understood that if the *Purchaser* fails to comply with the stipulated conditions of operation or fails to permit the *Company* to inspect defects before repairing, or alters or adds to the product in any way, the *Company's* responsibility shall terminate.

Patents: The *Company* will defend any suit or proceeding brought against the *Purchaser* so far as based on a claim that any apparatus, or any part thereof, sold by the *Company* constitutes an infringement of any patent of the United States, if notified promptly in writing and given authority, information, and assistance (at the Company's expense) for the defense of same, and the Company shall pay all damages and costs awarded therein against the Purchaser. In case said apparatus or any part thereof is in such suit held to constitute infringement and the use of said apparatus or part is enjoined, the Company shall, at its own expense, either procure for the *Purchaser* the right to continue using said apparatus or part; or replace same with noninfringing apparatus; or modify it so it becomes noninfringing; or remove said apparatus and refund the purchase price and the transportation and installation costs thereof. The foregoing states the entire liability of the Company for patent infringement by said apparatus or any part thereof.

FRACTIONAL-HP POLYPHASE SQUIRREL-CAGE INDUCTION MOTORS

GENERAL ELECTRIC fractional-horsepower polyphase squirrel-cage motors are built to give dependable, low-cost service. The two general types of construction available are suitable for the large majority of industrial applications requiring constant-speed operation. These are the standard general-purpose type and the industrial and machine-tool type.

Standard General-purpose Motor Construction

These motors, with their dripproof construction, heavy steel base, and sleeve or ball bearings, are particularly useful for applications of a general character where motor drive from a polyphase industrial circuit is needed.

The outstanding features of these motors include:

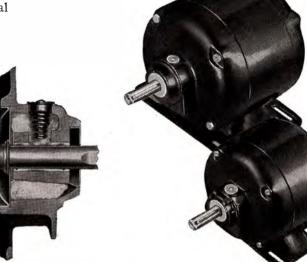
1. Strong, welded, rolled-steel frame with uniform air gap for maximum performance.

2. Windings of Formex wire, effectively insulated to prevent short circuits, grounds, etc., even under conditions of moisture, oils, mild acids, and alkalis.

3. A one-piece, cast-aluminum rotor winding which is practically indestructible.

4. Sturdy end shields to give rigid support to rotating parts.

5. Sleeve bearing concentrically bored to mirror-like finish for long bearing life and quiet operation—oiling required but once a year.


6. Accurately fitted, aligned, and protected ball bearings require greasing only once every two years.

F-hp General-purpose, Constant-speed Motors

Solid Base—3- or 2-phase, 60/50 Cycles

TYPE	TYPE K, POLYPHASE		MODIFICA- TION CLASS (SEE TABLE	OPEN SLEEVE- BEARING	TOTALLY ENCLOSED, BALL-BEARING	
Frame	Нp	Speed, Rpm	AT RIGHT)	220 and 440 Volts	220 and 440 Volts	
$43 \\ 45 \\ 63$	1/6	$1725 \\ 1140 \\ 860$	B B C	* \$16.00 * 18.00 30.00	* \$20.75 * 22.75 35.50	
$47 \\ 43 \\ 45 \\ 63$	1⁄4	345 1725 11 4 86	B B B C	* 16.00 * 16.00 * 23.00 36.00	* 20.75 * 20.75 * 27.75 41.50	
47 45 63 7 3	1⁄3	345 1725 114 86	B B C C	* 18.00 * 18.00 30.00 45.00	* 22.75 * 22.75 35.50 50.50	
49 63 7 3	1⁄2	3450 1725 1140	B C C	* 23.00 25.00 36.00	* 27.70 30.50 41.50	
67 73	3/4	345 1725	C	32.00 32.00	37.50 37.50	
73	1	3450	с	38.00	43.50	

* For 220 volts only. Add 10% to open sleeve-bearing-motor prices for 440 volts.

Fractional-hp Type K polyphase induction motors

ADDITIONAL INFORMATION

Modifications

Cutaway view of wool-packed

sleeve bearing

General Information
 Special Shafts

	Price A	ddition
	Lo	ts 1
	Class B	Class C
3. Standard Voltages		
(a) 110 or 550 volts	10%	10%
(b) 440 volts	10%	
(c) 380 volts—50 cycles	10%	
(d) 220/440 or 220/380 volts	20%	
4. Enclosure		
Both end shields	\$1.00	\$1.50
5. Explosion-proof		
Class I, Group D, solid base,		
single-voltage	8.00	12.00
6. Ball Bearings		
For horizontal or vertical service	3.75	4.00
		1

Dimensions: Open-GEM-851 and page 79. Explosion-proof-GEM-872.

Descriptive Publication: GEA-1974.

Control: See page 72.

Industrial and Machine-tool Motor Construction

These motors are of totally enclosed, ball-bearing construction. They have a rigid base and extra features which make them particularly useful on industrial applications where frequent "start-stop" service, plugging, and metal-dust atmospheres are encountered. Their major features are as follows:

1. Firmly anchored windings to stand up under start-stop service and momentary overload plugging. 2. Totally enclosed construction prevents the en-

2. Focarly enclosed construction prevents the entrance of dust, chips, compounds, etc., from the motor.


Rigid base for permanent alignment on machines.
 Ball bearings to meet thrust conditions where encountered.

5. Variety of mountings available for ease and convenience in "tailoring" motors to fit the machines they are to drive.

6. Convenient conduit box permits connections to be made easily, quickly, and permanently.

Fig. 1 The sturdy Type K fractionalhp motors for machine-tool and other industrial applications

Disassembled view, showing construction details of G-E machine-tool motors

Rabbeted machine mounting, Style F-1

Flat-face mounting, Style F-2

Compact, rigid ball-bearing construction

Flange mounting, Style F-3

Industrial or Machine-tool Motor—3-phase or 2-phase, 60 Cycles, A-c—Totally Enclosed, Ball-bearing

Нр 55 С	e	60 CYCLES, THREE-PHASE 1725 RPM (LIKE FIG. 1)	2	50 CYCLES, THREE-PHASE 1425 RPM (LIKE FIG. 1)			
Rise	Volts	Model No.	Price	Volts	Model No.	Price	
1⁄4	$\begin{array}{c} 220\\ 440\\ 550\end{array}$	5K43AC2026 5K43AC2027 5K43AC2028	\$20.75 22.35 22.35	220 440 	5K43AC2029 5K43AC2030	\$20.75 22.35	
1/3	$ 220 \\ 440 \\ 550 $	5K45AC1601 5K45AC1602 5K45AC1603	22.75 24.55 24.55	220 440 	5K45AC1604 5K45AC1605	22.75 24.55	
1/2	220 440 550	5K63AC2257 5K63AC2258 5K63AC2259	30.50 30.50 33.00	220 440 	5K63AC2265 5K63AC2266	30.50 30.50	
3/4	220 440 550	5K65AC136 5K65AC137 5K65AC138	37.50 37.50 40.70	220 440 	5K65AC139 5K65AC140	37.50 37.50	

For prices of Styles F-1, F-2, and F-3, refer to the Company.

INTEGRAL-HP TRICLAD POLYPHASE SQUIRREL-CAGE MOTORS

Open, Constant-speed

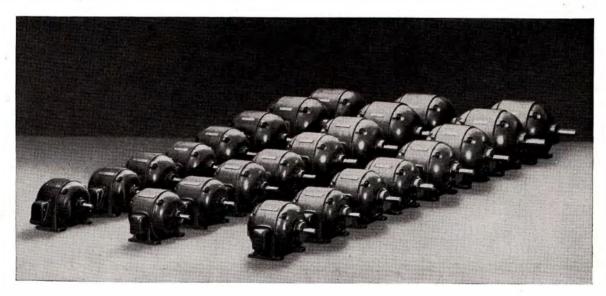
NO OTHER standard motor, we believe, has ever met the requirements of industry with so wellbalanced a combination of performance characteristics, convenience features, and provisions for protection. Streamline appearance—smooth, quiet performance ample starting, pull-up, and maximum torque—protection—low starting current—all cast-iron enclosure new bearing designs—New Formex wire insulation system. These and many other features make the new Tri-Clad motor applicable to a much wider field of use than any previous general-purpose design. Wherever you have a general-purpose application, and need a *constant-speed*, economical, dependable drive, specify Tri-Clad motors.


Electrical Types (See page 104)

The Tri-Clad Type K motor is a normal-torque, normal-slip motor that has low-starting-current characteristics which make **it** widely acceptable for fullvoltage starting, thus permitting the use of a simple, inexpensive control of the across-the-line type.

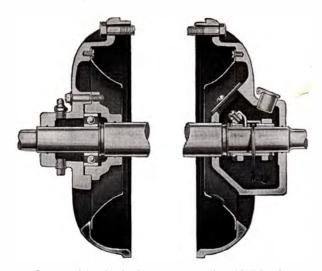

The Tri-Clad motor is also built in the Type KG high-starting-torque, high-slip construction which is particularly suitable for starting such applications as loaded compressors, conveyors, etc.

The Tri-Clad motor is also available in Type KR, a high-starting-torque, high-slip electrical design. This type of construction lends itself best where pulsating flywheel loads are encountered or frequent starting and reversing may be necessary.

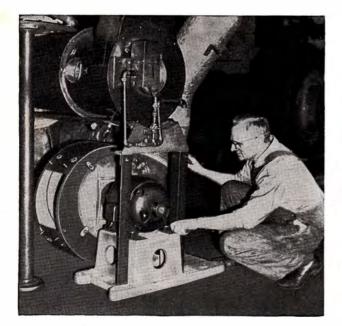

Multispeed motors having two, three, or four different constant speeds are also available.

Tri-Clad motor, typical of larger sizes

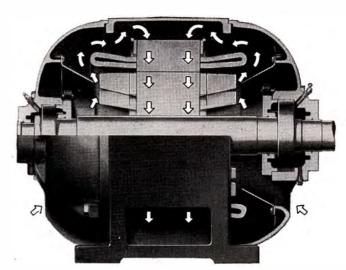
Tri-Clad motor, typical of smaller sizes



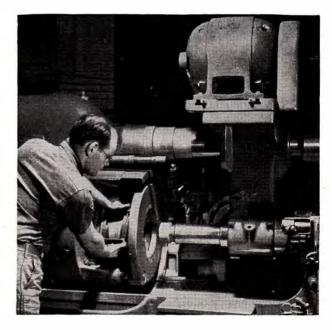
Tri-Clad motors with uniform construction and appearance, from the smallest to the largest


Mechanical Construction

The following features of Tri-Clad motors are of outstanding importance.


- 1. They have extra protection against physical damage. The one-piece cast-iron frame and end shields protect the vital parts from external blows, falling objects, dripping liquids—keep them safe and secure even under "slam-bang" conditions. The entire stator frame, including integrally cast feet, is built to give all-round strength without excess weight.
- 2. They have extra protection against electrical breakdown. The stator windings are of Formex wire—the toughest magnet wire ever developed —which gives extra protection against moisture, oil, abrasion, and heat aging. New synthetic bonding varnish and Glyptal No. 1201 Red on end windings make a sturdy unit with a durable finish.

Cutaway views showing internal construction of ball-bearing and sleeve-bearing end shields



Tri-Clad motors are easy to install

Cutaway view of Tri-Clad ball-bearing motor, showing compact construction and double-end ventilation

- 3. They have extra protection against operating wear and tear. Sleeve bearings of new design have a scientifically determined length and diameter, and a method of grooving that assures a continuous oil film over the entire bearing surface. A new and simple ball-bearing mounting assures correct alignment. Bearings can be cleaned and greased without disassembly.
- 4. Tri-Clad motors have a modern streamline appearance that harmonizes with the most modern machine design and factory layout.
- 5. Tri-Clad motors have extra convenience features which help you to install them faster and to keep them in service with less attention. You save time with the new Tri-Clad motors because they are easy to handle, are quickly mounted, are easy to wire, and are convenient to lubricate.

Tri-Clad motors give smooth, efficient performance

GENERAL 🋞 ELECTRIC

Open, Horizontal Squirrel-cage Induction Motors

3- and 2-phase, 60 and \$50 Cycles—110 (326 Frame and below), 208, 220, 440, 550 Volts, Constant-speed—Full-voltage Starting*

	11-		1	Pr	ices			Hp,		1	Pri	ices	
† Frame	Hp, Continuous, 40 C	Sync Speed, Rpm	TYP MOTOR	E K ONLY	TYPE	C KG ONLY	† Frame	Continuous, 40 C	Sync Speed, Rpm	MOTOR	E K ONLY	TYPE MOTOR	
	Rise	Kpili	Sleeve- bearing	Ball- bearing	Sleeve- bearing	Ball- bearing		Rise		Sleeve- bearing	Ball- bearing	Sleeve- bearing	Ball- bearing
204	1⁄4	600	\$50	\$54			364S 364	25	\$3600 1800	\$194 185	\$204 194	\$199	\$209
204 224	1/3	720 600	50 59	54 63	required in		$ 404 \\ 405 \\ 445 $		$1200 \\ 900 \\ 720 \\ 720$	254 292 400	267 307 420	273 336	287 353
$204 \\ 224 \\ 225$	1/2	900 720 600	44 59 66	48 63 70	requi		504 364S	30	600 §3600	463 267	486 280		
$203 \\ 224 \\ 225 \\ 254$	3/4	1200 900 720 600	39 51 66 80	43 55 70 84	torque are	ing torque	$365 \\ 405 \\ 444 \\ 504 \\ 505$		1800 1200 900 720 600	254 292 364 463 546	267 307 382 486 573	273 336 419	287 353 440
$203 \\ 204 \\ 225 \\ 254 \\ 254$	1	1800 1200 900 720 600	35 42 58 80 89	39 46 62 84 93	int starting	er cent start	365S 404 444 445 505 542	40		322 307 364 421 546 615	338 322 382 442 573 646	353 419 484	371 440 508
203 204 224 254 254 284	11/2	3600 1800 1200 900 720 600	44 42 70 89 97	48 46 53 74 93 102	by with 225 per cent starting torque are r	pecify 225 p	404S 405 445 505 542 546	50		401 382 421 496 632 696	421 401 442 521 664 731	439 484 570	461 508 599
204 224 225 254 284 324	2	3600 1800 1200 900 720 600	51 49 55 81 97 123	55 53 59 85 102 129	If motors wi	141110 0 111100 1	405S 444S 505 542 546 556	60	\$3600 1800 1200 900 720	464 444 496 572 699 791	487 464 521 601 734 831	508 570 658	533 599 691
224 225 254 284 324 326	3	3600 1800 1200 900 720 600	58 55 67 92 123 147	62 59 71 97 129 154	\$70 97	\$74 102	444S 445S 542 546 556 558	75	600 §3600 §1800 1200 900 720 600	599 521 595 672 803 909	629 547 625 706 843 954	599 684 773	629 718 812
225 254 284 324 326 365	5	$\begin{array}{c} 3600 \\ 1800 \\ 1200 \\ 900 \\ 720 \\ 600 \end{array}$	70 67 88 118 147 194	74 71 92 124 154 204	70 92 124 	74 97 130	445S 542S 544 556 558 6334	100	\$3600 \$1800 1200 900 720 600	833 666 779 824 986 1116	875 699 818 865 1035 1172	766 896 948	804 941 995
$254 \\ 284 \\ 324 \\ 326 \\ 365 \\ 404$	71/2	$3600 \\ 1800 \\ 1200 \\ 900 \\ 720 \\ 600$	92 88 112 141 194 238	97 92 118 148 204 250	92 118 148	97 124 155	539Z 546S 546S 558 6334 6335	125	\$3600 \$1800 \$1200 900 720 600	1032 794 928 1043 1152 1280	1084 834 974 1095 1210 1344		
$284 \\ 324 \\ 326 \\ 364 \\ 404 \\ 405$	10	3600 1800 1200 900 720 600	118 112 134 176 238 279	124 118 141 185 250 293	118 141 189	124 148 198	549Z 547S 557S 558 6335 564	150	\$3600 \$1800 \$1200 900 720 600	1196 920 1078 1205 1290 1436	1256 966 1132 1265 1355 1508	10.00	
$324 \\ 326 \\ 364 \\ 365 \\ 405 \\ 444$	15	3600 1800 1200 900 720 600	141 134 176 216 279 321	148 141 185 227 293 337	141 189 232	148 198 244	549Z 557S 559S 6335 564 566	200	\$3600 \$1800 \$1200 \$900 720 600	1528 1175 1410 1520 1550 1729	1604 1234 1481 1596 1628 1815		-
$326 \\ 364 \\ 365 \\ 404 \\ 444 \\ 445$	20	3600 1800 1200 900 720 600	168 160 216 254 321 400	176 168 227 267 337 420	172 232 273	181 244 287	500		000	1/29	1010		

ADDITIONAL INFORMATION

‡ 50-cycle Operation—All open-type, 40 C, general-purpose, 60-cycle poly-phase motors, when operated on 50 cycles at maintained voltages, will operate without injurious heating not exceeding 50 C rise. Synchronous speeds are 5/6 of those at 60 cycles.

224/440 Volts: Type K motors (Frame 505 and smaller) for either 220 or 440 volts, three-phase, have nine unconnected leads, with terminals, brought through the terminal board. A suitable nameplate, showing connections, is fastened to the motor frame above the conduit terminal box, so that the purchaser can readily connect for either voltage desired. Likewise, most two-phase motors will have eight leads brought out, so that the purchaser can connect for either 220 or 440 volts. The Type K (Frame 542 and larger) motors are connectible at terminal board for one voltage only.

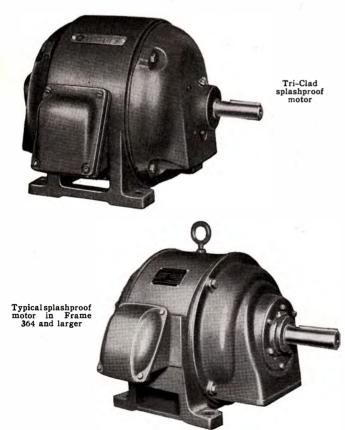
 $Direct Connection—The motors marked <math display="inline">\P$ are for direct connection only, and prices cover motors with standard, straight short shafts.

High Voltage—Motors in Frame 444 and larger are available as standard for operation at 2200 volts. Refer to the Company for prices, frames, and control.

Modifications: See page 64. Dimensions: See page 81. Descriptive Bulletin: GEA-3580, Control: See page 72.

GENERAL 🍘 ELECTRIC

-


TRI/CLAD SPLASHPROOF POLYPHASE SQUIRREL-CAGE MOTORS

Here is the "cast-iron" answer to application conditions of splashing water or spattering liquids which might make motor operation uncertain in many places. This is a motor designed for use in locations and industries that require hosing down of areas and machines for cleanliness, or where wetness is a factor in everyday production. These motors also can be considered for some outdoor applications in mild climates where regular maintenance is provided.

The splashproof design, available in Types K, KG, and KR, incorporates the many advantageous features of the Tri-Clad open motor-streamline appearance, convenience features, protection, and desirable operating characteristics. It also possesses the following important features which help it withstand "splashy" conditions:

- 1. One-piece cast-iron frame for corrosion resistance
- $\mathbf{2}$. Cast-iron deflecting end shields.
- 3. Cast-integral baffles.
- Nonabsorptive insulation of tough Formex 4 wire
- 5. Moisture-resistant bonding and penetrating varnish and Glyptal No. 1201 Red on windings.
- 6. Water-tight cast-iron conduit box.
- Cast-iron enclosed ball bearings for protection 7. of bearing and lubricant.
- Seal in end shield along shaft, to exclude liquids 8. from the bearing.

Typical applications are found for this motor in tanneries, dairies, breweries, other food-product plants, paper mills, oil fields, etc.

Splashproof, Horizontal, Ball-bearing, Type K Induction Motors, Constant-speed, Full-voltage Starting

3- and 2-phase; 60 Cycles; 110[†], 208, 220, 440, or 550 Volts

Hp	Sync. Speed, Rpm	* Frame	Price	Hp	Sync Speed, Rpm	* Frame	Price
1⁄2	900	204	\$52	10	3600 1800	$\frac{284}{324}$	\$133 130
3/4	1200 900	$\begin{array}{c} 203 \\ 224 \end{array}$	47 60		1200 900	$^{+326}_{+365}$	153 203
1	1800 1200 900	$203 \\ 204 \\ 225$	43 50 67	15	$3600 \\ 1800 \\ 1200 \\ 900$	$324 \\ 326 \\ 7 365 \\ 404$	160 153 203 251
11/2	$3600 \\ 1800 \\ 1200 \\ 900$	$203 \\ 204 \\ 224 \\ 254$	52 50 58 81	20	$3600 \\ 1800 \\ 1200 \\ 900$	$326 \\ 364 \\ 404 \\ 405$	188 186 251 291
2	$3600 \\ 1800 \\ 1200 \\ 900$	$204 \\ 224 \\ 225 \\ 254$	59 58 64 92	25 30	1800 1200 900 1800	$365 \\ 405 \\ 444 \\ 405$	212 291 340 291
3	$3600 \\ 1800 \\ 1200 \\ 900$	$224 \\ 225 \\ 254 \\ 284$	67 64 78 106	40	$1200 \\ 900 \\ 1800 \\ 1200 \\ 1200 $	403 444 445 444 445	340 415 355
5	$3600 \\ 1800 \\ 1200 \\ 900$	$^{+225}_{-254}_{-284}_{+324}$	79 78 101 136	50	1200 900 1800 1200 900	445 504 445S 504 505	415 488 434 488 567
71⁄2	$3600 \\ 1800 \\ 1200$	$254 \\ 284 \\ + 324$	104 101 130	60	1800 1200	504S 505	510 567
	900	7 324	160	75	1800	505S	593

ADDITIONAL INFORMATION

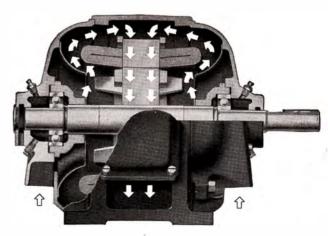
Dimension Prints

Frame 326 and below-GEM-1095-See page 81. Frame 364 and above-GEM-968-See page 82.

Descriptive Bulletins

Frame 326 and below—GEA-3595. Frame 364 and above—GEA-1619.

Modifications-See page 64.


Full-voltage Start-These motors are all suitable for fullvoltage starting.

* Tri-Clad Motors-Are those built in Frame 326 and below. Motors in larger frames are of an equivalent splash-resisting cast-frame design.

[†] Voltages—110-volt motors are available through Frame 326 as standard. Standard stock motors are reconnectible 220/440 volts, except 2-phase motors in frames marked †.

Control-See page 72.

Other Ratings-Splashproof motors in larger sizes and other speeds are available on request.

Cutaway view, showing internal construction of Tri-Clad splashproof motor

TOTALLY ENCLOSED POLYPHASE SQUIRREL-CAGE MOTORS

Standard Construction

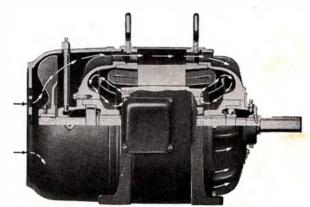
Are the conditions surrounding the equipment you wish to drive abnormally severe? If so, you will want a motor construction that completely protects the windings and the bearings, so that your equipment will keep running dependably and motor maintenance will be low. General Electric totally enclosed motors of standard construction provide this extra protection against severe conditions. These motors are applied where extreme-moisture conditions, abrasive or conductive dusts, acid or alkali fumes, etc. exist. They also are the best "outdoor" motor where the weather is variable and regular attention is not probable or desirable.

Explosion-proof Construction

To reduce the possibilities of explosions and to help keep factory-insurance rates down, General Electric has built and had tested at the Underwriters' Laboratories, Inc. an ever-increasing number of sizes of explosion-proof motors. There are two types of explosion-proof motors.

1. The motors tested and listed by the Underwriters' Laboratories for Class I, Group D, conditions are suitable for application in dry-cleaning plants, paint and varnish factories, alcohol and acetone plants, gasoline refineries, and wherever the gas involved is no more hazardous than high-test-gasoline vapor.

2. The motors tested and listed by the Underwriters' Laboratories for Class II, Group G, conditions are suitable for many applications in flour mills, feed mills, grain elevators, starch, sugar, and cocoa plants, and wherever no more-hazardous explosive-dust conditions may prevail.


General

Totally enclosed motors are available up through 600horsepower ratings, and down through the fractionalhorsepower sizes. In the larger sizes, they are built with an external cooling fan which keeps their size and cost down. They are furnished in practically all the types in which G-E open motors are built, and have comparable characteristics.

Carefully selected materials of the highest grade have been incorporated in these motors—sturdy cast parts; long, close-fitting machined joints for strength; one-piece, nonsparking-alloy fan; and many other high-quality features make totally enclosed motors the logical choice when "nothing but the best will do."

Totally enclosed, fan-cooled induction motor incorporating the onepiece, cast double-shell stator construction

Cutaway view of totally enclosed, fan-cooled motor, showing the neat, compact arrangement of parts

Explosion-proof, totally enclosed, fan-cooled induction motor

GENERAL 🋞 ELECTRIC

Totally Enclosed, Fan-cooled-Squirrel-cage Induction Motors, Standard and Explosion-proof

Horizontal, 3- and 2-phase, 60 Cycles, Constant-speed, Full-voltage Starting, 110 (326 Frame and below), 208, 220, 440, and 550 Volts

Frame	Hp, Con- tinueus,	Sync Speed,		NORMAL- G-TORQUE		G, HIGH- G-TORQUE
1 1 41110	55 C Rise	Rpm	Standard	Explo- sion-proof	Standard	Explo- sion-proo
204	1/2	900	\$52	\$68	9 8	
$\begin{array}{c} 204 \\ 224 \end{array}$	3⁄4	$\begin{array}{c} 1200\\900 \end{array}$	losed 0 ed	poloe 78	ng torque use Type	starting
$204 \\ 204 \\ 225$	1	$1800 \\ 1200 \\ 900$	Totally Enclosed Not Fan-cooled 19 19 19 19 19 19 19 19	Cotally Enclosed Not Fan-cooled 88 89 86 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	·	1.4
$224 \\ 224 \\ 225 \\ 254$	11/2	3600 1800 1200 900	Tota Not 81 81	Total Not 103	n 225% n these	specify
$224 \\ 225 \\ 225 \\ 254 \end{cases}$	2	3600 1800 1200 900	78 76 82 113	96 94 100 135	iwi	K prices and torque.
$224 \\ 225 \\ 254 \\ 284$	3	$3600 \\ 1800 \\ 1200 \\ 900$	85 82 99 135	103 100 121 159	¹ JI JI \$102 140	\$124 164
$225 \\ 254 \\ 284 \\ 324$	5	3600 1800 1200 900	97 99 131 178	115 121 155 209	102 135 184	124 159 215
$*254 \\ 284 \\ 324 \\ 326$	71/2	3600 1800 1200 900	124 131 172 201	146 155 203 232	135 178 208	159 209 239
*284 324 326 365	10	3600 1800 1200 900	161 172 194 263	185 203 225 308	178 201 276	209 232 321
*324 326 365 404	15	3600 1800 1200 900	201 194 263 320	232 225 308 386	201 276 336	232 321 402
*326 364 404 405	20	3600 1800 1200 900	228 247 320 358	259 292 386 424	259 336 377	304 402 443
*365S 365 405 444	25	3600 1800 1200 900	282 272 358 438	327 317 424 529	286 377 482	331 443 573
*404S 405 444 445	30	3600 1800 1200 900	371 358 438 546	437 424 529 637	377 482 601	443 573 692
*405S 444 445 504	40	3600 1800 1200 900	477 453 546 695	543 544 637 786	499 601 758	590 692 849
*445Z 445S 504 505	50	3600 1800 1200 900	650 602 695 818	741 693 786 909	659 758 890	750 849 983
*504Z 504S 505 6325	60	$3600 \\ 1800 \\ 1200 \\ 900$	752 760 818 1082	843 851 909 1190	826 890 1168	917 983 1276
*505Z 505S 6325 6325	75	3600 1800 1200 900	1046 895 1105 1182	1137 986 1216 1300	973 1194 1283	1063 1305 1401
*6325Z 6325S 6325 6326	100	3600 1800 1200 900	1441 1176 1289 1566	1585 1294 1418 1723	1276 1406 1690	1394 1535 1847
*6326Z 6326S 6326S 6333	125	$3600 \\ 1800 \\ 1200 \\ 900$	1759 1509 1763 1982	1935 1660 1939 2180		
*6328Z 6328S 6333S 6335	150	$3600 \\ 1800 \\ 1200 \\ 900$	2038 1748 2048 2290	2242 1923 2253 2519	41.	
*6329Z 6333S 6335S 6338S	200	3600 1800 1200 900	2603 2233 2679 2888	2863 2456 2943 3177		

ADDITIONAL INFORMATION

Low-starting-current Motors—All these motors are designed to withstand full-voltage starting. Type KG motors have low starting current. Type KF low-starting-current motors are available, $7\frac{1}{2}$ hp and up, at no extra cost, and can be considered where a system of limited line capacity is encountered. (See page 119.)

*3600-rpm Motors—Are furnished Type KF only. Orders must specify both the direction of rotation wanted and the direction of air flow desired. (Air flow, Frame 504 and larger, toward pulley end only.)

Explosion-proof—The motors listed are for Class I, Group D, hazardous-gas conditions, and have been tested and listed by the Underwriters' Laboratories.

Motors for Class II, Group G Conditions—Motors in Frame 6339 and smaller can be furnished for Class II, Group G conditions, and can be obtained with the Underwriters' Laboratories label. Prices are the same as for standard fan-cooled motors. These motors must be ordered specially (standard fan-cooled motors in stock are NOT applicable) to insure their meeting the Underwriters' Laboratories specifications.

Enclosed (Not Fan-cooled)—The motors so listed do not have fans, as they can be more economically furnished with smaller dimensions without them. Motors in ratings 2-15 hp can be obtained not fan-cooled, but at progressively increased prices and dimensions as the size increases.

Smaller-hp Enclosed Motors—See page 23.

220/440 Volts-Same as for open motors.

Modifications-See page 64.

Control—See page 72.

Descriptive Bulletins-Standard, GEA-1326.

Explosion-proof, GEA-1341.

Dimensions—See page 82.

Not fan-cooled, standard, GEM-549.

Explosion-proof, GEM-861.

Fan-cooled, standard and explosion-proof, Frames 204-326, GEM-860.

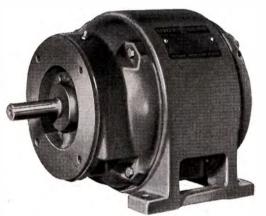

Fan-cooled, standard, Frames 364-505, GEM-853.

Fan-cooled, standard, Frames 364-505, GEM-766.

Fan-cooled, explosion-proof, Frames 364-505, GEM-854.

Fan-cooled, standard and explosion-proof,

Frames 364-505, GEM-767.


G-E drives provide dependable, economical service, combined with protection against explosion, for these centrifugal pumps operating out of doors in a large Texas refinery

GENERAL 🍪 ELECTRIC

G**●-**7

TRI CLAD MOTORS WITH FACE-TYPE AND "STYLE B" FLANGE-TYPE END SHIELDS

Of great convenience to many manufacturers of machines, pumps, fans, etc., are the complete lines of standard end-shield-mounted motors that can be obtained from General Electric. These motors provide an economical means of building the motor and driven machine into a compact unit which is attractive in appearance. The motors may be either mounted on the driven unit or the driven unit may be fitted onto the motor itself. What's more, many different kinds of G-E motors, all in a wide range of horsepower ratings, have the same mounting dimensions. Thus, the best type and size of motor can be selected for the different conditions encountered, without, in most cases, any changes in housing of the driven machine. Price additions are listed below. It is merely necessary to select the rating and construction desired—open, fan-cooled, direct-current (to Frame 284), or single-phase-and make the addition as shown for the corresponding frame size of the motor selected.

Tri-Clad induction motor, foot-mounted, with face-type end shield for close-coupled mounting

Tri-Clad induction motor with Style B flange-type end shield and round frame

The principal differences between the face-type and "Style B" flange-type end shields are as follows.

The flange-type end shield permits bolting the motor to the driven machine by inserting bolts (either through bolts or studs) from the motor to the driven unit. The flange-type end-shield mounting dimensions are somewhat larger in diameter than the face-type. They are NEMA standardized. Somewhat larger overhung loads can be mounted on the flange-type than on the facetype, particularly when through bolts are used.

The face-type end shield permits bolting of the driven unit to the motor by studs inserted from the driven unit into the motor end shield.

When the motor is overhung from the machine, round-frame construction generally gives a better-looking unit. The additions for obtaining round motor frames, less feet, are given on page 65.

End thrust from the load or from the mounting is very often present when these motors are used. Therefore, ball-bearing motors are used exclusively.

	NEN	FACE-TYPE END SHIELD WITH MACHINING						
Motor Frame		‡ No. of Motors				‡ No. o	f Motors	
†	1	2-4	5-24	25 or More	1	24	5-24	25 or Mor
203, 204	\$9	\$8	\$6	\$5	\$3	\$3	\$2	\$2
224, 225	12	10	8	7	4	3	3	2
254	16	14	11	9	5	4	4	3
284	20	17	13	11	6	5	5	4
324, 326	24	20	15	12	8	7	6	5
364, 365	32	25	18	18	10	9	7	7
404, 405	38	30	21	21	12	11	8	8
444, 445	46	36	36	36	15	13	13	13
504, 505	56	46	46	46	18	15	15	15

*Price Additions for Face-type and Flange-type End Shields

For Integral-horsepower, 3- and 2-phase Induction Motors, 200 Hp and Smaller

* Price additions should be made to price of ball-bearing motor. † If motor without feet is required, make regular addition for "round frame." See Modifications, page 65. Flange-type end shields for Frame 326 and smaller are regularly furnished with solid face, and Frame 364 and larger with open face. The opposite of standard can be obtained, but order must state type desired. ‡ Motors must be identical electrically and mechanically, and the Company must be permitted to complete shipment within 90 days following the initial stimulation of the initial state of the st shipment.

VERTICAL SOLID-SHAFT MOTORS 200 Hp and Smaller—All Types and Frequencies

Three- and two-phase; 110, 208, 220, 440, 550, and 2200 Volts

Sometimes it is advantageous or necessary to mount a motor in a vertical position. In many cases, standard horizontal, ball-bearing foot-mounted motors can be used in a vertical position—the motor being mounted against the side wall of a building or machine by means of its feet. Horizontal motors from stock may not be suitable. They should be furnished from the factory.

On the other hand, end-shield-mounted roundframe vertical motors can generally be more closely coupled to the load and can be given greater enclosure protection. General Electric has available vertical motors with many types of standard bases to suit different requirements—open Tri-Clad motors which are protected from falling objects, liquids, etc., and totally enclosed motors and explosion-proof constructions protected against more severe conditions.

The accompanying illustrations show the different constructions and bases available, and the following additions to the price of the corresponding horizontal motor apply.

Lines of Tri-Clad vertical pump motors, both solidand hollow-shaft, are also available. Prices and information upon request.

Tri-Clad motor mounted vertically by means of motor feet against the side wall. Drip cover for protection furnished as an extra feature

Totally enclosed, fan-cooled vertical motor with Style B flange base, normal- or high-thrust, Frames 204-326 Dimensions: GEM-908, Fig. 4

Face-type base for motor shown above Dimensions: Base and shaft same as GEM-892

Vertical shielded induction motor with ring base, normalor high-thrust, Frames N-6301 to N-6312. Dimensions GEM-955, page 86

GENERAL 🋞 ELECTRIC

Vertical general-pur-pose Tri-Clad motor with NEMA standard ring base, Frames 203 to 326. Dimensions GEM-1111; page 85

Style B flange base for vertical general-pur-pose Tri-Clad motors, Frames 203 to 326. Dimensions base and shaft same as GEM-1090

Price Additions

For open and shielded (dripproof) vertical motors, add to the price of the open, horizontal motor; for totally enclosed motors, add to the price of the totally enclosed, horizontal motor; and for totally enclosed, fan-cooled, verti-cal motors, add to the price of the totally enclosed, fan-cooled horizontal motor. The frame size of the horizontal motor used for the basic price should be used as the basis for selecting price additions for vertical features,

Price Additions (Add to Horizontal, Ball-bearing Motor) For 3600- and 3000-rpm Motors, 40 Hp and Larger, Refer to the Company

		NORI	MAL TH	IRUST				
<pre>‡Horizontal Motor Frame (Use Price of Ball- bearing Motor for</pre>	Vertical Motor Frame (For Finding	†General-purpose 40 C Rise			(Dr pro	elded rip- oof) Rise	†∆Totally Enclosed, Fan-cooled, 55 C Rise	
Motors in Frames Larger than 505)	Motors in Frames Larger		∆ Face- type Base	*Ring or △ Style B Flange Base	Face- type Base	Ring Base	Face- type Base	Style B Flange Base
$203-204 \\ 224-225 \\ 254$	Same as Horizontal ¶	\$3 5 8	\$4 6 10	\$10 14 21	\$6 7 13	\$12 15 24	§\$3 6 10	§ \$9 14 21
$\begin{array}{r} 284 \\ 324 - 326 \\ 364 - 365 \end{array}$) N6301, N6302	10 15	13 18	27 34	16 22 31	30 38 53	13 18 31	27 34 59
$\substack{404-405\\444-445\\504-505}$	N6301, N6302 N6305, N6306 N6307, N6308	· · · · ·	···· ···	 	40 53 72	66 84 110	40 63 84	73 110 141

* Tripod base can be furnished at same price as ring base for open motors in Frame 326 and smaller. † These price additions apply for squirrel-cage motors only. For vertical, enclosed, wound-rotor-motors, refer to the Company, ‡ These are horizontal-motor frames to be used for pricing purposes only. Vertical motors on dimension prints have frame numbers as shown in second

s These motors are totally enclosed, not fan-cooled.

Dimensions of frames for shielded motors on request. AFor deductions allowed on quantity orders, refer to the Company.

Maximum Recommended Thrust Loads

The values listed in the following table are the maximum recommended thrust loads in pounds, consistent with reasonable bearing life, to be carried by normal-thrust, vertical, solid-shaft, squirrel-cage in-duction motors. These values apply only when the load is direct-connected to, and properly aligned with, the motor, and when the direction of thrust is downward. Where upward or radial thrust is required, refer to the Company.

F	RAME	SQUIR	BALL-TH	GE INDU	JCTION	MOTORS	WILL		
Horizontal, Open or Totally	Vertical, Shielded	SHAF	SUPPORT, IN ADDITION TO THE ROTOR, SHAFT, AND HALF-COUPLING, THE FOL- LOWING NET WEIGHT IN POUNDS. THESE VALUES APPLY TO NORMAL-THRUST, SOLID- SHAFT MOTORS						
Enclosed, Fan- cooled	(Dripproof)	3600 Rpm	G NET WEIGHT IN PO S APPLY TO NORMAL-T	1200 Rpm	1000 Rpm and Below				
203-204		120	130	150	160	170	180		
224-225		380	400	480	510	510	510		
254		480	510	600	640	690	690		
284		440	460	550	560	640	660		
324-326		520	540	640	660	740	780		
$364 - 365 \\ 404 - 405$	N6301, N6302 N6303, N6304	940 1050	1000 1100	$\begin{array}{c} 1100\\ 1200 \end{array}$	1100 1200	$\begin{array}{c} 1100\\ 1200 \end{array}$	1100 1200		
$\begin{array}{r} 444 - 445 \\ 504 - 505 \end{array}$	N6305, N6306 N6307, N6308			$\begin{smallmatrix}1300\\1500\end{smallmatrix}$	$\begin{array}{c}1300\\1600\end{array}$	$\begin{smallmatrix}1&300\\1&700\end{smallmatrix}$	1300 1700		

EXAMPLE:

Required: 1-Type K, 10-hp, 1800-rpm, 220-volt, 3-phase, 6 totally enclosed (standard), normal-thrust, vertical induction 60-cycle

\$202

GENERAL 6 ELECTRIC

Tripod base for vertigeneral-purpose Tri-Clad motor, Frames 203 to 326. Dimensions GEM-1111; page 85

Face-type base

1089

vertical general-pur-pose Tri-Clad motor, Frames 203 to 326. Dimensions base and shaft, same as GEM-

No-base construction for vertical general-purpose Tri-Clad motor, Frames 203 to 326. Dimensions

GEM-1111; page 85

for

GENERAL-PURPOSE WOUND-ROTOR MOTORS

WOUND-ROTOR induction motors are available with both constant- and adjustable-varying-speed characteristics. Their field of application is principally:

1. On those constant-speed applications requiring frequent starting or reversing under heavy load, or where exceptionally high starting torque is required, or which impose severe starting duty.

2. On those applications requiring adjustable-varying-speed characteristics. (Adjustable-varying-speed characteristics mean that the speed can be adjusted to any value over a considerable range, but, once adjusted, will vary with change in load.)

The wound-rotor induction motor differs from the squirrel-cage induction motor in that the former has a wire-wound rotor with terminals brought out to collector rings. It differs in appearance from the squirrel-cage motor, principally with respect to the end shield on the collector-ring (or slip-ring) end of the motor.

Wound-rotor induction motors are the same for both constant- and adjustable-varyingspeed services; the speed characteristics desired are obtained by selecting controllers of the proper types.

General Electric manufactures a complete line of wound-rotor induction motors. In this catalog, sizes are listed from $\frac{1}{2}$ hp at 1200 rpm up to and including 75 hp at 1800 rpm. Other speeds and horsepower ratings can be obtained on request. The complete line of General Electric wound-rotor induction motors is uniform in essential mechanical and electrical characteristics. These motors are designated Type M.

All G-E wound-rotor induction motors can be furnished with either sleeve or ball bearings, and in various types of enclosure and frame modification to meet the requirements of any specific application.

A skeleton-frame wound-rotor induction motor

Wound-rotor, Type M, Open, General-purpose, Constant- and Adjustable-varying-speed

110 (326 Frame and smaller), 208, 220, 440, 550 Volts

3-phase or 2-phase, 60 and 50 Cycles

Frame	Hp	Sync Speed, Rpm	PRICES				Sync	PRICES	
			Sleeve- bearing	Ball- bearing	Frame	Нp	Speed, Rpm-	Sleeve- bearing	Ball- bearing
224	1/2	1200 900	\$100 110	\$105 116	324 324 326	10	3600 1800 1200	\$345 230 275	\$362 242 289
224 224	3⁄4	1200 900	109 133	114 140	365		900	341	358
$224 \\ 224 \\ 225$	1	1800 1200 900	113 122 144	119 128 151	$326 \\ 326 \\ 365 \\ 404$	15	3600 1800 1200 900	482 321 347 422	506 337 364 443
$224 \\ 224 \\ 224 \\ 224 \\ 254$	11/2	3600 1800 1200 900	173 115 133 156	182 121 140 164	$\begin{array}{r} 364 \\ 404 \\ 405 \end{array}$	20	$ \begin{array}{r} 1800 \\ 1200 \\ 900 \end{array} $	384 419 496	403 440 521
225 225 225	2	3600 1800 1200	180 120 144	189 126 151	$\begin{array}{r} 365\\ 405\\ 444 \end{array}$	25	1800 1200 900	432 476 548	454 500 575
$\frac{254}{225}$	3	900 3600	171 204	180 214 143	$405 \\ 444 \\ 445$	30	1800 1200 900	478 525 606	502 551 636
$225 \\ 254 \\ 284 $		1800 1200 900	136 165 194	143 173 204	$ \begin{array}{r} $	40	$ \begin{array}{r} 1800 \\ 1200 \\ 900 \end{array} $	566 617 699	594 648 734
$254 \\ 254 \\ 284 \\ 324$	5	$ \begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \end{array} $	249 166 201 240	261 174 211 252	445S 504 505	50	1800 1200 900	643 703 789	675 738 828
$284 \\ 284 \\ 324 \\ 326$	71/2	3600 1800 1200	0 197 0 241	311 207 253 302	504S 505	60	1800 1200	719 791	755 331
		900			505S	75	1800	825	866

ADDITIONAL INFORMATION

50-cycle Operation: All open 40 C, 60-cycle motors will operate on 50 cycles without injurious heating. Synchronous speeds are 5/6 of those at 60 cycles.

Reduced Speed: The horsepower output at 50 per cent below normal speed will be approximately 40 per cent of normal horsepower.

Dimensions: GEM-650E, 326 and below. See page 82. GEM-655-364 and above.

Descriptive Bulletin: GEA-1698.

220/440 Volts: All 220- or 440-volt motors in Frames 204-505 have sufficient leads brought out so they can be connected 220/440 volts.

Enclosures:

(a) Semiprotected—(collector end).

Price Additions

Frame	Solid or Screened Top Half	Perforated or Screened Bottom Half
$\begin{array}{c} 224-225\\ 254-284\\ 324-326\\ 364-365\\ 404-405\\ 444-445\\ 504-505\end{array}$	\$1 2 3 4 6 8 6 11	\$1 2 3 4 6 8 11

(b) Totally enclosed and totally enclosed, fan-cooled. Refer to Company.

Modifications: See page 64.

Control: See page 72.

GENERAL 🋞 ELECTRIC

GENERAL-PURPOSE SYNCHRONOUS MOTORS

NEW "900 SERIES"

DECIDED advances in construction details, appearance, and flexibility for possible mechanical and electrical modifications have been incorporated in this new line of general-purpose synchronous motors.

Consult the General Electric office nearest you for complete information.

The production of many millions of horsepower of synchronous motors over a period of more than fifty years has familiarized General Electric with every aspect of research and engineering in connection with this subject—every detail of manufacture and application—that would assist in rendering the greatest possible service to industry. Not otherwise could G-E synchronous motors have been so improved year by year as to meet in every respect the numerous and growing demands that have been made upon them.

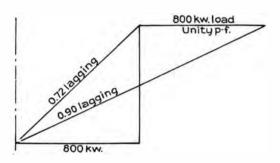


Diagram indicating improvement in power factor resulting from the use of a unity-power-factor synchronous motor, which furnishes no reactive kva

In this catalog is listed General Electric's new "900 Series" line of general-purpose, high-speed synchronous motors. A high-speed synchronous motor is regarded as one operating at a speed of 514 rpm or higher. The motors listed include both unity-power-factor motors, in sizes 25 hp at 1200 rpm up to and including 200 hp at 514 rpm, and 0.8-power-factor motors, sizes 20 hp at 1200 rpm up to and including 150 hp at 514 rpm.

These new G-E general-purpose synchronous motors were developed to fill the need for a synchronous motor which could be recommended for most general-purpose applications in the same way that a standard squirrelcage motor is recommended—that is, without a detailed study of the requirements of the application. For this reason, General Electric general-purpose high-speed synchronous motors have incorporated in their design high starting torque, overload capacity, mechanical simplicity, and the reliability of general-purpose squirrel-cage motors. Since the exciter is directconnected and overhung on the motor end shield,

Typical views of the new G-E "900 Series" synchronous motors for general-purpose application

general-purpose synchronous motors form complete compact units which, like squirrel-cage induction motors, simply require connection to an a-c power supply.

In addition to their ability to operate at unity or leading power factor, G-E high-speed synchronous motors in the larger sizes have higher efficiencies than squirrel-cage motors in corresponding ratings. This is of particular importance where the motor must operate continuously or a large percentage of the time.

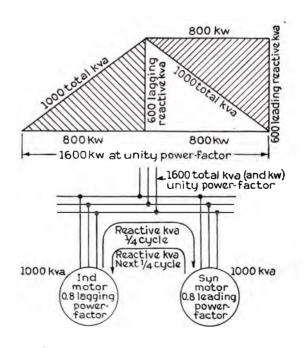


Diagram illustrating the interchange of reactive kva between induction motors and leading-power-factor synchronous motors 35

GENERAL 🍘 ELECTRIC

GENERAL-PURPOSE HIGH-SPEED SYNCHRONOUS MOTORS Type TS (3-phase) and Type QS (2-phase) 20 to 200 Hp, 60 Cycles

1.0-power-factor—40 C Stator by Thermometer, 50 C Rotor by Resistance 0.8-power-factor—40 C Stator by Thermometer, 60 C Rotor by Resistance

	1		1.0-po	wer-fact	tor	0.8-p	ower-fa	ctor				1.0-po	wer-fac	ctor	0.8-p	ower-fac	ctor
			-	PRI	ICE		PR	ICE					PR	ICE		PRI	ICE
Hp	Speed, Rpm	Volts	FRAME	Motor Only	Ex- citer †	FRAME	Motor Only	Ex- citer †	Нр	Speed, Rpm	Volts	FRAME	Motor Only	Ex- citer †	FRAME	Motor Only	Ex- citer †
20	1200 1200	$220 \\ 440-550 \\ 2200$	}			934 934	\$670 599	\$149 149	60	1800 1800	220 440–550 2200	} * 953S * 953S	\$1120 1176	\$128 128	* 953S * 953S	\$1195 1195	\$128 128
25	1200 1200	$220 \\ 440-550 \\ 2200$	<pre>} 934 934</pre>	\$570 599	\$149 149	934 934	583 612	149 149		1200 1200	$220 \\ 440 - 550 \\ 2200$	$\left. \begin{array}{c} 945\\945\end{array}\right.$	690 725	173 173	945 945	760 760	173 173
	900 900	$220 \\ 440-550 \\ 2200$	}	 	· · · · ·	944 944	670 704	252 252		900 900	$220 \\ 440-550 \\ 2200$	<pre>} 953 953</pre>	805 845	289 289	954 954	875 875	289 289
80	1200 1200	$220 \\ 440 - 550 \\ 2200$	<pre>} 934 934</pre>	583 612	149 149	935 935	610 641	149 149		720 720	$\substack{+220\\440-550\\2200}$	$\left. \begin{array}{c} 954\\954\end{array} \right.$	936 983	323 323	955 955	1000 1000	384 384
	900 900	$220 \\ 440 - 550 \\ 2200$	<pre>} 944 944</pre>	670 704	252 252	944 944	712 748	252 252		600 600	$220 \\ 440 - 550 \\ 2200$	$\left. \begin{array}{c} 954\\954 \end{array} \right.$	1060 1113	363 363	963 963	1150 1150	427 427
	720 720	220 .440–550 2200	}	·····	•••••	953 953	837 879	288 288	75	1800 1200 900	$220 \\ 440-550 $	* 953S 945 954	1195 760 875	128 173 289	* 954S 953 954	1317 876 985	128 252 289
40	1800 1800	220 440–550 2200	}		· · · · ·	* 945S * 945S	1065 1118	128 128		720 600	2200	955 963	1000 1150	323 427	963 963	1115 1270	384 427
	1200 1200	$220 \\ 440 - 550 \\ 2200$	$\begin{array}{c} 935\\ 935\end{array}$	610 641	149 149	944 944	645 677	173 173	100	1800 1200 900	$\left. \right _{\begin{array}{c} 220\\ 440-550 \end{array} \right $	* 953S * 953 954	1317 876 985	128 252 289	* 954S * 954S 955 963	1432 996 1095	128 252 329 384
	900 900	$220 \\ 440 - 550 \\ 2200$	$\left. \begin{array}{c} 944\\ 944 \end{array} \right.$	712 748	252 252	945 945	758 796	252 252		720 600 514	2200	963 963 964	1115 1270 1430	323 427 485	964 972	1220 1380 1530	427 613
	720 720	$220 \\ 440-550 \\ 2200$	$\left. \begin{array}{c} 953\\953 \end{array} \right.$	837 879	288 288	953 953	887 931	323 323	125	1800 1200 900	220	* 954S * 954S 955	1432 996 1095	128 252 289	* 963S * 955S 963	1549 1105 1210	146 292 329
	600 600	$220 \\ 440 - 550 \\ 2200$	}	 	 	954 954	1000 1050	363 363		720 600 514	440-550	963 964 972	1220 1380 1530	323 427 485	964 965 973	1330 1480 1620	384 543 613
50	1800 1800	$220 \\ 440-550 \\ 2200$	} * 945S * 945S	1065 1118	128 128	* 953S * 953S	1120 1176	128 128	150	1800 1200 900	220	* 954S * 955S * 963S	1549 1105 1210	128 252 289	* * 963 * 964	1742 1310 1410	146 292 329
	1200 1200	$220 \\ 440 - 550 \\ 2200$	} 944 944	645 677	173 173	945 945	690 725	173 173		720 600 514	$\left.\begin{array}{c}440-550\\2200\end{array}\right $	964 965 973	1330 1480 1620	323 427 485	965 972 974	1530 1670 1800	480 543 613
	900 900	$220 \\ 440-550 \\ 2200$	$ brace{945}{945}$	758 796	252 252	953 953	805 845	289 289								-	
	720 720	$220 \\ 440-550 \\ 2200$	} 953 953	887 931	323 323	954 954	936 983	323 323	200	1800 1200 900 720	$\left \begin{array}{c} 220 \\ 440-550 \\ 2200 \end{array} \right $	* 963S * 963S * 964S 965	1742 1310 1410 1530	146 252 329 384	***	****	******
	600 600	$220 \\ 440-550 \\ 2200$	<pre> 954 954 954 </pre>	1000 1050	363 363	955 955	1060 1113	363 363		600 514] [972 * 974S	1670 1800	427 485	ŧ	ļ ‡	ŧ

* For direct connection only. Not recommended for belt drive.
† Exciter price includes a CR8000-B1, back-of-board, exciter-field rheostat, with its operating mechanism.
For prices and other information on these ratings, refer to the Company.
For descriptive information, see GEA-3434.
For weights and dimensions, see GEM-1101, -1102, noting that the letter S following frame number denotes motor for direct coupling without base.

For control, see page 75

SINGLE-PHASE MOTORS

Motors for the Home and Farm—Motors for Industry

MOST homes have many single-phase fractional-hp motors performing the little services that make pumps, oil burners, stokers, refrigerators, etc. General Electric makes motors for practically every use and co-operates with manufacturers in applying the best and most economical motor to their devices. It pays to look for and to furnish G-E fractional-hp motors.

G-E motors can be ordered by mail, as well—general-purpose motors for home workshops, for toys, for hobbies, for replacements on washing machines, for motorizing many duties on the farm and in the home. Motors for such purposes are listed in this catalog.

Motors for such purposes are listed in this catalog. Industry uses many single-phase motors on lighting circuits, and on feeder lines where single-phase is more economical. Office devices and business machines use and depend on electric-motor drive. Fans and unit heaters, air conditioning and room coolers, pumps and small machines are other uses. Many of these motors are exactly matched to the requirements of the driven machine through co-operation between G.E. and the manufacturer. Others can be ordered direct for general-purpose use.

Select and order one of the following G-E single-phase motors the next time you need a new or replacement motor. (Ask our nearest sales office about the G-E Exchange and Service Plan.)

FOR SMALL HOME-WORKSHOP MACHINES AND SIMILAR DEVICES

Dripproof—Sleeve Bearings—50 C Rise

Single-phase, Constant-speed

TYPE KH, SPLIT-PHASE, SPECIAL SERVICE

Prices include the following:

-

- 1. Eight-foot rubber-covered cord and molded rubber plug assembled to the motor.
- 2. "On-Off" toggle switch mounted on the terminal box as shown.
- 3. Solid base with slots for mounting.

TYPE KH: Split-phase, 60 Cycles

4. Shaft extension $1\frac{1}{2}$ in. long by $\frac{1}{2}$ in. diameter, with flat out one end of motor as shown, or out both ends of motor. See prices below.

Workshop motor with single shaft extension

(Starting current in excess of 20 amperes)

Frame	Нр, 50 С	Rated Full- load Speed, Rpm	Volts	Approx Full- load Amperes	Shaft Extension Brought Out	Model No.	Price, Including Accessories Listed
45	* 1/4	1725	115	4.8	One end	5KH45AB1793	\$8.05
45	1⁄3	1725	115	5.6	One end	5KH45AB1647	11.20
45	1⁄3	1725	115	5.6	Both ends	5 KH45AB1948	11.80

* ¼ hp rated 40 C temperature rise, continuous.

For dimensions, see page 80.

Or Workshop motor with singl

GENERAL 🍘 ELECTRIC

GENERAL-PURPOSE SINGLE-PHASE MOTORS, TYPE KH, SPLIT-PHASE

These motors, in different speeds and ratings, constitute the general-purpose line of G-E fractional-hp single-phase motors.

The Type KH split-phase motor is a constant-speed, moderate-torque motor for general use. It is designed to meet the requirements of a great variety of applications, such as oil burners, ironers, office appliances,

General-purpose single-phase Type KH motor equipped with resilient base

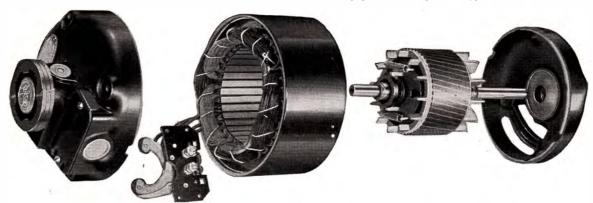
instruments, food-preparation machinery, pumps, small compressors for paint spraying, fans, blowers, etc. It is quiet-running, economical, and is suitable for applications where high starting torque is not a requisite. Where high starting torque is required, use Type KC.

The basic motor listed has the following desirable features.

- 1. Solid, drawn-steel rigid base with bolt-hole slots for belt-tightening adjustment.
- 2. Dripproof construction, 40 C rise in all but the "20 Series" frame (which is open).
- 3. Conduit box cast in end shield opposite pulley end for quick connection ("20 Series" frame has conduit box on frame, which can be ordered).
- 4. Terminal board permits easy connection.
- 5. Sleeve bearings are of the filtered-oil-return type with large oil capacity, requiring only occasional oiling.

The following accessories are available at moderate price additions.

- 1. Resilient, Neoprene cushion ring base for quiet vibration-free operation (see page 39).
- 2. Ball bearings, grease-seal type, for applications requiring thrust.
- 3. Thermo-Tector, for either automatic- or manualreset thermal-overload protection of the motor (see page 62).
- 4. Motor-mounted toggle switch for convenient starting (see page 63).
- 5. Cord and plug sets (see page 63).
- 6. Many other special features, including explosionproof construction, etc.


In addition to the standard general-purpose line of Type KH motors, many lines for special application are made.

Fractional-hp—General-purpose—Constant-speed Single-phase

Open, 4	0 C	Rise,	Sleeve-bearing, Solid-base, 11	5 Volts,
			Types KH and KC*	•

			6	60 CYCLE	s	†	50 cycl	ES
Hp	Rpm	Class	Frame	Price, KH	Price, KC	Frame	Price, KH	Price, KC
1/20	$1725 \\ 1140 \\ 860$	B B B	23 35 45	\$8.50 10.30 12.30		23 35 45	\$9.35 11.15 13.15	
1/12	$3450 \\ 1725 \\ 1140 \\ 860$	B B B B	23 35 43 47	13.00 8.50 12.00 14.20	···· ····	23 35 43 47	13.85 9.35 12.85 15.05	···· ···
1/8	$3450 \\ 1725 \\ 1140 \\ 860$	B B B R	33 43 45 49	13.00 8.50 12.30 18.50	\$11.C0 15.85 23.25	33 ‡43 ‡45 ‡49	13.85 9.35 13.15 19.35	\$11.85 16.70 24.10
1/6	$1725 \\ 1140 \\ 860$	B B C	‡43 47 63	8.75 14.20	11.00 17.80 30.00		9.60 15.05	11.85 18.65 31.65
1/4	$3450 \\ 1725 \\ 1140 \\ 860$	B B C	$ \begin{array}{r} 47 \\ 45 \\ 48 \\ 67 \end{array} $	13.00 10.00 	16.00 12.25 23.25 *36.00	47 ‡47 48 77	13.85 10.85 	16.85 13.10 24.10 37.35
1/3	$3450 \\ 1725 \\ 1140 \\ 860$	B C C	47 47 65 77	15.00 13.85 	*18.00 *17.50 *30.00 *45.00	$47 \\ 49 \\ 65 \\ \cdots$	15.85 	*18.85 *18.35 *31.35
1/2	$3450 \\ 1725 \\ 1140$	B C C	49 63 77		*23.00 *25.00 *36.00	49 63 77	 	*23.85 *26.35 *37.35
3/4 1	$3450 \\ 1725 \\ 3450$	C C C	67 73 67		*32.00 *32.00 *40.00	67 73 67		*33.35 *33.35 *41.35

*See page 39 for description of Type KC motors.

Disassembled view of general-purpose split-phase Type KH motor, showing the clean-cut, simple, and dependable construction

GENERAL 🍪 ELECTRIC

ADDITIONAL INFORMATION

1. *115/230 volts instead of 115 volts.

2. **†50-cycle Speeds** — Speeds differ from those listed as follows:

Instead of 3450, use 2875 Instead of 1725, use 1425 Instead of 1140, use 960 Instead of 860, use 715

3. [‡]Frames: Listed frames are for KH motors. KC frames differ as follows:

Instead of 43, use 45 Instead of 45, use 47 Instead of 47, use 49 Instead of 49, use 48

4. Special Features: Price additions for special features:

	Class B	Class C
230 volts.	\$0.85	None
Totally enclosed	1.00	\$1.50
Explosion-proof (Class I, Group D).	8.00	12.00
Ball bearings.	3.75	4.00
Resilient base.	.50	.90

In totally enclosed construction, the frame size may differ from that listed for the open motor. All totally enclosed motors are rated 55 C rise.

- 5. Other Modifications: See page 62.
- 6. Control: See page 72.
- 7. Dimensions: See page 79.
- 8. Descriptive Publications:
 - Type KH—GEA-1276 Type KC—GEA-2969.

GENERAL-PURPOSE SINGLE-PHASE CAPACITOR-MOTORS

General-purpose, single-phase fractional-hp capacitor-motor, Type KC

The truly modern single-phase motor (for mediumhorsepower ranges, or high-torque applications in the ratings where Type KH normal-torque motors are available) is the capacitor-motor.

Of particular importance are the following advantages which are obtained because of the cast rotor and absence of brushes or commutator.

- 1. Dependability inherent with the simplicity of the capacitor design.
- 2. Quiet operation.
- 3. Freedom from radio interference.

There are types available to start and run all singlephase applications.

Fractional-horsepower Capacitor-motors, Type KC

These motors are designed to meet high-startingtorque requirements. They are of the capacitor-start, induction-run type and have a compact, long-lived, G-E capacitor mounted on the frame. They are particularly suited for air conditioning, commercial refrigeration, belt-driven fans, etc. All the many features and accessories listed for the Type KH motor are equally applicable to the fractional-horsepower Type KC motor.

Integral-hp Tri-Clad Capacitor-motor, Types KC and KCJ

These motors have a completely new mechanical design which features triple protection against physical damage, electrical damage, and operating wear and tear. They have completely new electrical designs which provide torque characteristics suited to different types of applications.

Tri-Clad capacitor-motors have that versatility of application which assures the right motor for the right job because:

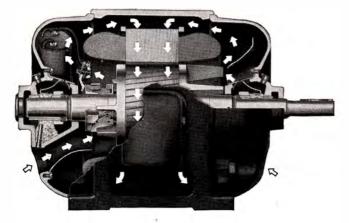
- (a) Tri-Clad protection makes them suitable for a wide variety of applications.
- (b) Their attractive appearance harmonizes with modern equipment.
- (c) All Type KC motors are furnished dual-voltage, 115/230 volts.
- (d) All motors can be operated in either direction of rotation.
- (e) A choice of torques permits right selection for the job.

The *Type KC motor* is designed for fans, blowers (direct-connected and belt-driven), centrifugal pumps, and other applications requiring moderate starting torques.

The $Type \ KCJ$ motor is designed for applications requiring high starting torque; such as compressors, loaded conveyors, reciprocating pumps, etc.

In applying these two types of motors, it is highly important that the application be carefully checked, and the motor selected which will best meet the purchaser's requirements.

Fans or blowers, if used with a high-starting-torque motor, may be brought up to speed too quickly, resulting in noise, vibration, or belt slippage. This is less likely to happen when normal-torque motors are used. Further, the capacitors for normal-torque motors are mounted inside the end shield, avoiding restriction of air flow on fan applications.


GENERAL 🋞 ELECTRIC

	Type KC, Normal-torque	Type KCJ, High-torque
Starting Torque	Approximately 185 per cent for 4-pole motors	Approximately 300 per cent for 4-pole motors
Voltage	Dual-voltage, 115/230 volts, except 5-hp, 3600-rpm, which is 230 volts only.	1-hp, 1800-rpm, 115/230 volts. Others are single-voltage, 230 volts.
Frequency	On most applications, 60-cycle KC motors provide adequate starting torque on 50-cycle circuits. Starting and pull-up torques are slightly reduced. 50-cycle speed will be 5/6 of 60- cycle speed. Heating will not be injurious on 50 cycles.	Single-frequency, 60 or 50 cycles. Most high-starting-torque applications require full rated starting torque. Therefore, a 50-cycle winding must be used on 50-cycle circuits to meet the torque requirements of the load and provide the same starting torque as a 60-cycle motor.
Location of Capacitors	Inside end shield (opposite pulley end)	1-hp, 1800-rpm, inside end shield. Others in case on top of motor.

Comparison of Types KC and KCJ Motors

Typical Type KC normal-starting-torque motor

Tri-Clad capacitor-motor, Type KC, showing the compact arrangement and the protection afforded by this design

	Ше		MOTOR	PRICE
Frame	Hp, Continuous, 40 C Rise	Sync Speed, Rpm	Normal-start- ing-torque, Type KC	High-starting torque, Type KCJ
224	1/2	900	\$70	
203 225	3⁄4	$\begin{array}{c}1200\\900\end{array}$	49 89	
203 224	1	$\begin{array}{c}1800\\1200\end{array}$	37 64	\$37
$203 \\ 204 \\ 225$	11/2	3600 1800 1200	51 49 82	*49
$\begin{array}{c} 204 \\ 224 \end{array}$	2	$3600 \\ 1800$	67 64	*64
$\begin{array}{c} 224 \\ 225 \end{array}$	3	$3600 \\ 1800$	89 82	*82
225	5	3600	*144	

Typical Type KCJ high-starting-torque motor

ADDITIONAL INFORMATION

1. *Volts: 230 volts, instead of 115/230.

2. Ball Bearings: For ball-bearing motors, add \$4 to the price of the sleeve-bearing motors. (Exception—For the 5-hp, add \$7.)

3.	Resilient Bases: Addition (for resilient base):
	Frames 203 and 204\$1.00
	Frame 224 1.50
	Frame 225 2.00

4. †50-cycle operation: Type KC. Two- and four-pole Type KC motors (except 5-hp) will operate on 50 cycles at 5/6 of the 60-cycle speed without injurious heating, at rated voltage, with slightly reduced starting and pull-up torques. Six- and eight-pole Type KC motors are for 60-cycle operation only. Type KCJ. Prices of 50-cycle, 40 C rise, continuousrated, Type KCJ motors are the same as those of corresponding 60-cycle motors. Special windings are required; refer to the Company for data. Standard 60-cycle motors should not be used on 50-cycle circuits without checking characteristics and application with the Company.

5. Thermo-Tectors: Add for Thermo-Tectors—115/230 volts (2 hp—230 volts only)

1/2, 3/4, and 1 hp	. \$1.35
1½ and 2 hp	. 2.00

6. Modifications: Other than standard. These motors are available in face- and flange-type end shields, round frame, and special shaft only. See page 31.

7. Dimensions: See page 81. —KC, GEM-1091 —KCJ, GEM-1094

8. Descriptive Bulletin: GEA-3603.

9. Control: See page 74.

GENERAL 🋞 ELECTRIC

GO-7

SINGLE-PHASE, INTEGRAL-HP REPULSION-INDUCTION MOTORS, TYPES SCR AND SCA

The General Electric repulsion-induction motor combines the high starting torque of the repulsion motor with the constant-speed characteristics of the induction motor.

It is recommended for use as follows:

- For the larger single-phase general-purpose 1. ratings-Type SCR.
- For reversing duty on cranes, hoists, machines, $\mathbf{2}$ etc.—Type SCA.
- For totally enclosed, fan-cooled, standard and 3. explosion-proof constructions of integral-horsepower single-phase design.

Motors to meet these conditions are listed below.

+			Type SCR	1	Type SCA Reversible				
† Hp. 40 C,	Sync, Speed,	160-	‡ PR	ICE	±60-	‡ PRICE			
Con- tinuous	Řpm	cycle Frame	Sleeve- bearing	Ball- bearing	cycle Frame	Sleeve- bearing	Ball- bearing		
1⁄2	900				224	\$81	\$85		
3⁄4	1200 900			····	$\begin{array}{c} 204\\ 225 \end{array}$	56 102	60 107		
1	1800 1200 900	· · · · · · · · · · · · · · · · · · ·	 \$105	 \$110	$204 \\ 224 \\ 254$	43 74 121	47 78 127		
11/2	3600 1800 1200 900	 254	 132	 139	$204 \\ 224 \\ 225 \\ 254$	59 56 94 152	63 60 99 160		
2	3600 1800 1200 900	254 255	120 157	126 165	224 A225 254 255	77 74 138 181	81 78 145 190		
3	3600 1800 1200 900	255 324	 145 200	152 210	224 A225 225 324	102 94 167 230	107 99 175 242		
5	3600 1800 1200 900	254 324 326	120 169 279	126 177 293	$225 \\ 324 \\ 324 \\ 326$	166 138 194 321	174 145 204 337		
* 7½	3600 1800 1200		182 169 240	191 177 252	$\begin{array}{r} 324\\ 326\end{array}$	194 276	204 290		
*10	3600 1800	326 326	· 224	260 235	326 ⁻	258	271		

Single-phase, Repulsion-induction, Open, Horizontal, Constant-speed, 60 and 50 Cycles, 115/230 Volts

ADDITIONAL INFORMATION

1. *Voltage: $7\frac{1}{2}$ - and 10-hp motors rated at 230/460 volts instead of 115/230 volts.

 15/230 volts.
 15/230 volts.
 15/260 rots, 1 br, instead of the 40 C continuous rating listed, which is for the Type SCR.
 150 Cycles: Prices of the 50-cycle motors are the same as those of corresponding 60-cycle motors, although the frame sizes may be different. Speeds will be 5/6 of 60-cycle speeds. Special windings are required. Refer to the Company for data. 4. Special Shafts

See Modifications, page 66.

5.

Dimensions. See page 83. Sleeve-bearing, GEM-600. Ball-bearing, GEM-601. Descriptive Publication—GEA-560.

7. Control—See page 74.

Single-phase, integral-hp, totally enclosed, fan-cooled, repulsion-induction motor, Type SCR

Single-phase Totally Enclosed, Type SCR, Standard and Explosion-proof, Horizontal, Constant-speed, 60 and 50 Cycles, 115/230 Volts

5			60-CYCL	E PRICE	50-cycl	E PRICE
Frame	Hp Con- tinuous 55 C Rise	¶ 60- cycle Sync Speed	Standard	Explosion- proof Class I, Group D, Conditions	Standard	Explosion- proof Class I, Group D, Conditions
224	1/2	900	§ \$79	§ \$97		····
$\begin{array}{c} 224 \\ 225 \end{array}$	3⁄4	1200 900	§ 74 116	§ 92 134	§ \$74	§ \$92
$\begin{array}{c} 224\\ 224\\ 3\end{array}$	1	$1800 \\ 1200 \\ 900$	\$ 59 91 137	§ 77 109 159	§ 59 91	§ 77 109
$224 \\ 224 \\ 225 \\ 3$	11/2	3600 1 800 1200 900	§ 77 76 109 164	§ 95 94 127 186	78 76 109	96 94 127
$224 \\ 225 \\ 3 \\ 324$	2	3600 1800 1200 900	94 91 152 217	112 109 174	94 91 152	112 109 174
224 225 324 326	3	$3600 \\ 1800 \\ 1200 \\ 900$	116 109 205 260	134 127 	† 116 109 205	† 134 127
$3\\324$	5	3600 1800 1200	171 152 229	189 174	171 152 ‡ 229	189 174
326 324 326	*71⁄2	$3600 \\ 1800 \\ 1200$	242 229 300		242 ‡ 229	
326 326	*10	3600 1 800	308 284			

ADDITIONAL INFORMATION

1. *Voltage: The $7\frac{1}{2}$ - and 10-hp motors are rated 220/440volts instead of 110/220 volts.

Frames 2. †Frame 225 instead of 224

Frame 326 instead of 324 §Not Fan-cooled: These motors are totally enclosed (not 3. fan-cooled)

4. ¶50 Cycles: 50-cycle synchronous speeds are 5/6 of the 60-cycle synchronous speeds listed.

5. Class II, Group G: All the motors listed above can be obtained for Class II, Group G, conditions. Prices are the same as for standard totally enclosed and totally enclosed, fancooled motors.

6. Dimensions: See page 82. GEM-1074.

SINGLE-PHASE SYNCHRONOUS INDUCTOR TORQUE MOTORS, TYPE SMY

Self-starting synchronous inductor motor, 50 Frame

No gears, no direct current—only the single-phase lighting circuit. Yet, here are motors which run at low speed, at synchronous speed, and with a constant torque. The reason: the motors are designed around the remarkable G-E permanent magnet-alnico.

Many uses have been found already for these motors -office machines, stokers, scanning disks, mixers, etc. There are almost unlimited possibilities for future applications.

One feature the motors have may be advantageous for some applications and may require that special precautions be taken if they are used: when the load

Compact self-starting synchronous inductor motor, 20 Frame

exceeds the maximum for the motor, or the drive is stalled, the motor instantly reverses rotation without switch change and keeps on running in reverse.

The best precaution against such reversal is to build on some sort of mechanical nonreverse ratchet. On one stoker application, the backstop was set so that the motor would continue to reverse, back and forth, until the obstruction, which generally was a piece of coal, was broken through.

Perhaps this motor will make possible carrying out ideas you may have had for motorizing some function on a machine or around the plant or home.

Self-starting Synchronous Inductor Motors

N . 1 .	DAT	The second	D :	Quantity Net Price Applying to Firm Orders as Below							
Model No. (See Motor	RATING		Price	90-day order			180-DAY ORDER			1-YEAR ORDER	
(See Motor Data Below)	Torque, Oz-In.	Speed, Rpm	Lots 1–49	Lots 50	Lots 100	Lots 250	Lots 500	Lots 1000	Lots 2500	Lots 5000	
SMY20J9 * SMY20J16 * SMY20J15 * SMY20J14	$\begin{array}{c}2\\12\\24\\48\end{array}$	$\begin{array}{c}100\\4\\2\\1\end{array}$	\$11.35 14.85 15.85 15.85	\$7.29 9.66 10.37 10.37	\$6.43 8.66 9.34 9.34	\$5.93 8.03 8.67 8.67	\$5.50 7.50 8.10 8.10	\$5.25 7.25 7.85 7.85	\$5.00 7.00 7.60 7.60	\$4.75 6.75 7.35 7.35	
SMY50L6 SMY50H18 SMY54H16	$20 \\ 40 \\ 75$	75 75 75	18.00 21.00 26.75	12.00 14.30 18.20	10.85 13.65 17.40	10.10 13.05 16.60	9.50 12.40 15.80	9.00 12.40 15.80	8.75 	8.55 	

1 to 100 Rpm, 110 Volts, 60 Cycles, 2 to 75 Oz-In. Torque

For 220 volts, add **\$1.00 net** to 110-volt prices. For 25 and 50 cycles, refer to the Company for prices and available speeds and torques, * Available by means of built-in gear reduction,

Torque, Oz-In. Speed, Rpm Model No. Bearings Gear Ratio Volts Cycles Dimensions MY20J9 MY20J16 None 25:1 50:1 110 110 110 Sleeve Sleeve 100 60 60 60 (20)115Sleeve $^{2}_{1}$ Sleeve îīŏ Refer to the Company SMY20J14 100:1 Y50L6 Sleeve None 20 75110 60 60 SMY50H18 SMY54H16 Sleeve Ball 40 75 75 75 None 110 None 110 60

Motor Data

Rotation: All motors listed above are reversible, SMY 20-frame motors have 3 leads, and the SMY 50- and SMY 54-frame motors have 4 leads as standard. SMY 50- and SMY 54-frame, 3-lead reversible motors can be furnished to order, and should be priced by adding 15 per cent to above prices.

GENERAL B ELECTRIC

42

DIRECT-CURRENT MOTORS

WHERE D-C POWER IS AVAILABLE

IN certain localities, and in many plants or mines, direct current is available. G-E direct-current motors of all sizes will drive equipment and loads as dependably as their companion polyphase motors. In such instances, d-c motors give additional advantage because of the ability to utilize the motor speeds best suited to the application, or of a value which minimizes or eliminates belt or gear costs. Constant speed for maintained production is obtained with shunt- or compound-wound units.

WHEN SPEED ADJUSTMENT IS ADVANTAGEOUS Varying-speed Motors

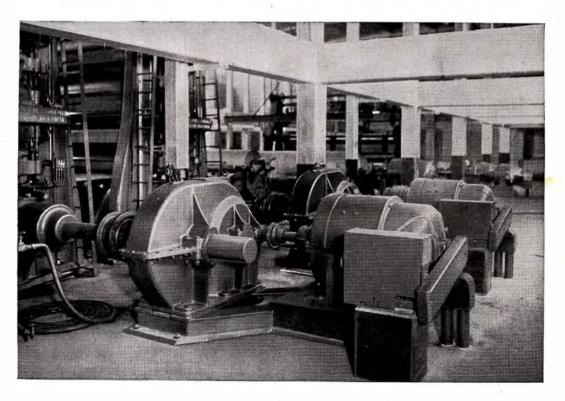
Speed change is desired for street cars, locomotives, cranes, and other transportation equipment after the initial inertia has been overcome. In many cases, this speed change is obtained in whole or in part by a serieswound or series-compounded d-c motor. With such a motor, speed increases automatically as the original starting load drops off. These are known as varyingspeed motors.

Constant-speed Motors

1

Γ.

Γ.


.

Most applications require a constant speed, one which holds relatively the same speed, despite load changes. Speed adjustment may be controlled, though sometimes only a moderate amount of speed adjustment or change is desired. Such may be obtained over a speed range of less than 3:1 with the standard integralhorsepower constant-speed motor by adjusting the motor field current with rheostats.

Standard adjustable-speed d-c motors, on the other hand, permit speed changes over a range of 3:1 or higher with field-current change.

These motors are used where a constant-voltage source of d-c power is available or is supplied by motorgenerator sets for different drives. Many continuousprocess industries obtain advantages from being able to match the speed of one machine with that of another, or from being able to hold tension or vary the speed on a winding roll.

Most flexible and benefit-producing of all adjustablespeed combinations, however, is the use of adjustablevoltage system. This system includes a "constantspeed" type of motor, driven by a motor-generator set which has an adjustable d-c output voltage. Speed ranges to meet every requirement are available. Control is inexpensive. Many cranes and hoists use this system to increase production. Planers use it for rapid return and reversal of platen. Printing presses, wire-drawing equipment, steel-mill runout tables, and many others also gain benefits from this drive. G-E application engineers can choose the drive best suited to your application. In addition, G.E. has available a "packagepower" unit, the Speed Variator, which includes a motor-generator set, control, and a d-c motor. Ask the nearest G-E office for complete details.

Installation of totally enclosed heavy-duty direct-current motors

DIRECT-CURRENT FRACTIONAL-HP GENERAL-PURPOSE MOTORS

A complete line of Type BC motors is available for use where d-c motors with characteristics paralleling those of a-c motors are required. They are interchangeable in frame diameter with G-E a-c motors of corresponding ratings. Ball- and sleeve-bearing designs, and open and totally enclosed constructions, are available.

Desirable features that give these motors the fine reputation they have earned are:

- 1. Frame protected from falling dirt and water.
- 2. Rotor with solidly bonded windings and heavy, long-lasting commutator.
- 3. Bearings that require infrequent lubrication.
- 4. Sturdy end shields for rigid support.
- 5. Filter capacitor mounted internally for suppression of radio interference.

Open, 40 C Rise, Sleeve-bearing, Solid-base, 115-volt, Fullvoltage-start, Constant-speed, Direct-current Motor. Type BC, Compound-wound

Нp	Rpm	Class	Frame	Price
1/20	1725 1140	BB	* 28 * 36	\$17.00 18.05
1/12	$\begin{array}{r} 860 \\ 3450 \\ 1725 \\ 1140 \end{array}$	B B B B B	42 * 28 * 36 41	21.00 18.00 17.00 18.70
1⁄8	860 3450 1725 1140	B B B B B	$ \begin{array}{c c} & 42 \\ & 36 \\ & 42 \\ & 42 \\ & 42 \end{array} $	21.00 20.00 20.00 21.20
1∕6	860 1725 1140	B B B	44 42 44	26.50 20.00 23.00
1⁄4	860 3450 1725 1140	B B B	$\begin{array}{r} 66\\ 42\\ 44\\ 46\end{array}$	30.00 23.00 22.00 26.50
1⁄3	$\begin{array}{r} 860 \\ 3450 \\ 1725 \\ 1140 \\ 860 \end{array}$	ВВВВВВВВВВВВВВВСВВССССССС	66 42 46 66 74	37.00 27.00 25.00 31.00 42.00
1⁄2	3450 1725 1140	BCC	44 66 74	31.00 31.00 38.00
3⁄4 1	$ \begin{array}{r} 1140 \\ 3450 \\ 1725 \\ 3450 \\ \end{array} $	CCC	66 74 66	41.00 41.00 45.00

ADDITIONAL INFORMATION

- 1. Note: *These motors are shunt-wound.
- 2. Special Features: Price additions for special features:

	Class B	Class C
230 or 32 volts	\$0.85	\$1.35
Totally enclosed	1.00	1.50
Explosion-proof (Class I, Group D)	8.00	12.00
Ball bearings	3.75	<u>4</u> .00

3. Frames: In totally enclosed construction and in special voltages, the frame size may differ from that listed for the open, standard-voltage motor. All totally enclosed motors are rated 55 C rise.

- 4. Modifications: See page 62.
- 5. Dimensions: See page 79. Open, GEM-852. Explosion-proof, GEM-872.
 - Control: See page 72.
- 7. Descriptive Bulletin: GEA-3513.

Fractional-hp d-c motor having interchangeable mounting dimensions with f-hp d-c motors of corresponding ratings

Armature and commutator end shield of fractional-hp Type BC d-c motor, showing compact construction

MOTORS FOR INDUSTRIAL AND MACHINE-TOOL DESIGN

The desirable features of the industrial and machinetool polyphase motor are also available in the directcurrent design. Prices are as follows, and dimensions are the same as those indicated on page 24.

DIRECT-CURRENT, 1725 RPM										
Volts 115 230 115 230 115 230 115 230	Model No.	Price								
230	5BC44AB1358 5BC44AB1359	\$26.75 27.60								
230	5BC46AB558 5BC46AB559	29.75 30.60								
230	5BC66AB1105 5BC66AB1106	36.50 37.85								
115 230	5BC68AB11 5BC68AB12	46.50 47.85								

GENERAL 🋞 ELECTRIC

6.

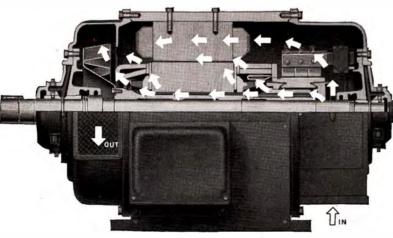
GO-7

HEAVY-DUTY DIRECT-CURRENT INTEGRAL-HORSEPOWER MOTORS

Constant- and Adjustable-speed

Heavy-duty direct-current open motor, Types B and CD, typical of sizes to 50 hp

Notable among the many outstanding features that are included in one or both of these designs are:


- 1. Built-up commutators, assembled under tons of pressure, yet a twist of a wrench can disassemble them.
- 2. Compensating, adjustable-tension brush holders for constant brush pressure under varying conditions.
- 3. Sturdy rolled-steel frame.
- 4. Solidly bonded and impregnated armature and field coils, resistant to moisture, acids, oils, and fumes.
- 5. Efficient fan and scroll of new quiet design.
- 6. Dust-tight, oil- or grease-tight bearing housings.

New! this past year—a streamline, protected, heavy-duty, reversible d-c motor in a complete line, known as Type CD ''1000 Series'' motors, rated from 50 hp at 850 rpm, and larger. These motors have sturdiness and strength for the rough service to which they are often put. Mines, quarries, planers, press drives, and many other applications demand this type of motor.

Fit companions to the "1000 Series" line are the compact, sturdy, new Type B (in NEMA frames) and Type CD Motors rated from 1 to 50 hp.

Heavy-duty Type CD direct-current open motor, typical of the new "1000 Series" line

Cutaway view of Type CD "1000 Series" dripproof, fully protected direct-current motor, showing improved ventilating system designed for reversible rotation which gives positive axial ventilation through the motor. This new design gives a motor of less height, reduced weight, and higher rating per frame size than heretofore possible. Compact, sturdy construction gives dependability under heavy-duty conditions prevalent in mines and industry

GENERAL 🛞 ELECTRIC

Integral-horsepower, Constant-speed, Direct-current Motors

General-purpose, Open, Sleeve-bearing, Horizontal, Shunt-wound, Commutating-pole Type— 115, 230 Volts, Type B (Frames 203-284) and Type ¶CD (Frames 66-95 and "1000 Series")

¶ Frame	Hp, Continu- ous, 40 C Rise	‡ Rated Full-load Basic Speed, Rpm	Max Speed by Field Control, Rpm	Volts	*† Sleeve- bearing Shunt- wound Motor Price	¶ Frame	Hp, Continu- ous, 40 C Rise	‡ Rated Full-load Basic Speed, Rpm	Max Speed by Field Control, Rpm	volts	*† Sleeve- bearing, Shunt- wound Motor Price
204 204 225	1/2	850 690 575	1700 1380 1150	$\left.\begin{array}{c}115\\230\end{array}\right.\left.\left\{\begin{array}{c}\end{array}\right.$	\$91 115 126	75 85 93	25	3500 1750	 2190 1725	115 230	\$836 557 448 559 685 762 924
203 224 225 254	3/4	1150 850 690 575	2300 1700 1380 1150	$\left.\begin{array}{c}115\\230\end{array}\right\}$	85 100 126 203	95 1126 1129		1150 850 690 575	1725 1700 1380 1150		685 762 924
$203 \\ 204 \\ 225 \\ 226 \\ 254$	1	1750 1150 850 690 575	2190 2300 1700 1380 1150	$\left.\right\} \begin{array}{c} 115\\ 230\end{array} \left\{ \right.$	82 96 110 137 209	83 85 95 1126 1129 1133	30	$3500 \\ 1750 \\ 1150 \\ 850 \\ 690 \\ 575$	1925 1725 1700 1380 1150	230 115 230	623 494 621 764 857 1022
$203 \\ 204 \\ 224 \\ 254 \\ 254 \\ 284$	11/2	$\begin{array}{r} 3500 \\ 1750 \\ 1150 \\ 850 \\ 690 \\ 575 \end{array}$	2190 2300 1700 1380 1150) 115 230	102 93 110 188 209 231	85 93 95 1129 1133 1235	40	$\begin{array}{c} 3500 \\ 1750 \\ 1150 \\ 850 \\ 690 \\ 575 \end{array}$	1925 1440 1275 1380 1150	230	726 578 743 912 1010 1215
204 224 225 254 284 284	2	$3500 \\ 1750 \\ 1150 \\ 850 \\ 690 \\ 575$	2190 2300 1700 1380 . 1150	$\left.\right\} \begin{array}{c} 115\\ 230\end{array} \left\{ \right.$	114 104 129 200 229 255	93 95 1130 1128 1135	50	3500 1750 1150 850	1130 1925 1440 1275		847 702 860 1051
224 225 254 284 73 73	3	$\begin{array}{r} 3500\\1750\\1150\\850\\690\\575\end{array}$	2190 2300 1700 1380 1150	115 230	136 128 195 236 270 300	$ \begin{array}{r} 1131 \\ 1140 \\ 1136 \\ 1242 \\ 1238 \\ \hline \end{array} $		690 575	1035 1150	230	1210 1396
$225 \\ 254 \\ 284 \\ 66 \\ 67$	5	$\begin{array}{c} - & - & - \\ 3500 \\ 1750 \\ 1150 \\ 850 \\ 690 \\ 575 \end{array}$	2190 2300 1700 1380 1150	115 230	169 203 247 298 336 381	95 1129 1133 1235 1337 1129S	60 75	$ \begin{array}{r} 1750 \\ 1150 \\ 850 \\ 690 \\ 575 \\ \hline 1750 \\ \end{array} $	$ \begin{array}{r} 1925 \\ 1440 \\ 1065 \\ 1035 \\ 865 \\ \\ 1925 \\ \end{array} $	230	756 978 1185 1361 1565 894
75 254 284 66 75 75 83	71/2	3500 1750 1150 850 690	2190 1725 1700		300 246 300 358 415	$ \begin{array}{r} 1131 \\ 1235 \\ 1335 \\ 1441 \\ 11358 \end{array} $	100	$ \begin{array}{r} 1150\\ 850\\ 690\\ 575\\$	1925 1440 1065 1035 865 1925 1440		1142 1366 1591 1815
83 284 66 67 83 83 83 85	10		1380 1150 2190 1725 1700 1380 1150		466 345 282 345 411 472	1239S 1339 1444 1539 	125	$ \begin{array}{r} 1150\\ 850\\ 690\\ 575\\\\ 1750\\ 1150\\ 850\\ \end{array} $	$ \begin{array}{r} 1440 \\ 1065 \\ 1035 \\ 865 \\ \hline 1925 \\ 1325 \\ 1065 \\ \end{array} $		1405 1655 1912 2160 1331 1655
85 73 67 83 85 93 95	15	690 575 3500 1750 1150 690 575	1150 2190 1725 1700 1380 1150		546 421 344 422 506 553	$ \begin{array}{r} 1345 \\ 1448 \\ 1546 \\ \hline 1239S \\ 1341S \\ 1444S \\ \end{array} $	150	$\begin{array}{r} 850\\690\\575\\1750\\1150\\850\\690\\575\end{array}$	$\begin{array}{c} 1065\\ 865\\ 720\\ \hline 1925\\ 1325\\ 1065\\ 865\\ 720\\ \end{array}$		1932 2160 2529 1538 1896 2193 2529
95 75 83 85 9 5 95 1129	20	575 3500 1750 1150 850 690 575	1150 2190 1725 1700 1380 1150		684 490 398 492 598 674 805	1549 1553 1344S 1447S 1549S 1556 1648	200	090 575 1750 1150 850 690 575	1925 1325 1065 865 720	230	2892 2892 1949 2361 2691 3110 3533

ADDITIONAL INFORMATION

1. *Compound- or Series-wound motors: Available at approximately 3% addition, on the average, to the shunt-wound price. Series motors not recommended for belt drive.

2. \dagger Ball-bearing motors available at 5% addition to the sleeve-bearing price.

3. **‡Additional Ratings** available with full-load basic speeds from 500 to 100 rpm. For data, consult the Company.

4. §Voltages: 550- or 600-volt motors are available.

5. **Shafts:** If the CD "1000 Series" motors are desired

with short shaft for direct connection, specify frame with suffix letter "S."

- 6. Modifications: See page 67.
- 7. Dimensions: See page 82. GEM-550; GEM-920.
- 8. Descriptive Bulletins: GEA-1542; GEA-1868.
- 9. Control: See page 76.

GENERAL B ELECTRIC

Integral-horsepower, Adjustable-speed, Direct-current Motors

Open, *Sleeve-bearing, Shunt-wound, Horizontal, Commutating-pole Type, 1115, 230 Volts, Type B (Frames 204-284) and Type ¶CD (Frames 66-95 and "1000 Series")

	1	Horsepower			*			Horsepower			*
	TAPERED	CONST	ANT	†§ Basic	Sleeve- bearing,		TAPERED	CONST	ANT	†§ Basic	Sleeve- bearing
¶ Frame	Continuous, 40 C Rise	Continuous, 40 C Rise	One- hour, 50 C Rise	Full- load Speed, Rpm	Shunt- wound Motor Price	¶ Frame	Continuous, 40 C Rise	Continuous, 40 C Rise	One- hour, 50 C Rise	Full- load Speed, Rpm	Shunt- wound Motor Price
204 204 224 225	1/2-3/4	`i <u>/</u> 2	1/2 3/4	$\begin{array}{r} 690\\ 850\\ 690\\ 575\\ 500\\ 450\\ 400\\ 350\\ 300\\ \end{array}$	\$101 100 124 135 150 161 176	85 93 95 95 1129	10-15	10	15	575 500 450 400 350 300	\$587 643 707 737 838 888
204 224 225 225	3⁄4-1	3/4	. 1	$ \begin{array}{r} 350 \\ 300 \\ 1150 \\ 850 \\ 690 \\ 690 \end{array} $	190 236 94 110 135	95 95 1129 1133	15–20	15	20	$575 \\ 500 \\ 450 \\ 400 \\ 350 \\ 300$	650 750 827 908 1017 1110
$\begin{array}{c} 225\\ 254\\ 254\end{array}$				$ \begin{array}{r} 1150\\ 850\\ 690\\ 575\\ 500\\ 450\\ 400\\ 350\\ 300\\ \end{array} $	150 176 230 238 256 262	i i ż ś i i ż ś	20-25	20	25	$575 \\ 500 \\ 450 \\ 400$	765 888 975 1073
224	1-11/2	1	11/2	300	106	1138	20-25	20	25	350 300	1200 1304
224 225 225 254 254 284 284 284 284		. • · ·	- 72	$ \begin{array}{r} 1150\\ 850\\ 690\\ 575\\ 500\\ 450\\ 400\\ 350 \end{array} $	121 147 225 233 250 258	1131 1136 1235	25-30	25	30	575 500 450 400 350 300 300	878 1009 1115 1230 1354 1472
225 254 254 284 284 284	11/2-2	11/2	2	350 300 1150 850 690 575 500 450 400	280 290 121 207 225 248 263	1136 1138 1337	30-40	30	40	575 500 450 400 350 300	971 1123 1242 1359 1499 1667
	2-3		3	350	285 297 331 339 142	ii38 i238	40-50	40	50	$575 \\ 500 \\ 450 \\ 400 \\ 350 \\ 300$	1154 1345 1472 1609 1799 1971
$226 \\ 284 \\ 284 \\ 66 \\ 66 \\ 67$			Ū	$ \begin{array}{r} 1150 \\ 850 \\ 690 \\ 575 \\ 500 \\ 450 \end{array} $	220 246 274 291 319	i44i 1238 i34i	50-60	50	60	300 500 450 400 350	1971 1546 1684 1839 2041 2253
67	2-3	2	3	400 350 300	332 374 387	1445	60-75	60	75	300	2253
284 • 66 66	3–5	3	5	1150	387 214 260 290	1341 1441 1539	00-10	00		$ \begin{array}{r} 450 \\ 400 \\ 350 \\ 300 \end{array} $	1736 1868 2046 2271 2495
284 • 66 67 67 75 75 83 83				850 690 575 500 450 400 350 300	214 260 290 323 347 382 401 449 472	1441 1445 1543	75–100	75	100	500 450 400 350 300 $ 300 $	1994 2172 2357 2587 2840
	5-71/2	5	71/2	690 575 500 450	361	1 543 1 550	100-125	100	125	400 350 300	2793 3006 3356
67 75 83 83 83 83		Ъ.		500 450 400 350 300	447 488 511 578 612	1 553 1645	125-150	125	150	400 * 350 300	3202 3437 3793
83 83 83 85 85 95 95	71/2-10	71/2	10	690 575 500 450 400 350 300	446 501	1645 1653	150-200	150	200	400 350 300	3524 3828 4230
83 85				500 450	549 603 631			200	200	400	4236
85 95				400	631 718					350	4570
95			· · · · · ·	300	756					300	5012

ADDITIONAL INFORMATION

Maximum Speeds. By means of field control, certain 1. maximum speeds may be obtained. There are two fundamental ratios of maximum to basic speed that may be obtained. These are 3:1 to 4:1, and either may be had at the prices listed. In some ratings, by paying a 10% price addition, it is possible to obtain a maximum speed by field control in excess to the 4:1 ratio. For details, consult the Company.

*Ball-bearing motors available at 5% addition to the 2.sleeve-bearing price.

 *Additional ratings available with full-load basic speeds of 250, 200, 150, or 100 rpm. For data, consult the Company.
 *Voltages: Types CD "1000 Series" motors are standard at 230 volts only, instead of the 115, 230 volts listed. For Type CD "1000 Series" at 115 volts, and all types at 550 or 600 volts, consult the Company.

5. §Speed Changes: From basic speeds upwards to 150 per cent, temperature will not exceed 50 C rise; above 150 per cent basic speed, temperature will not exceed 40 C rise. For prices of motors rated 40 C rise over the entire speed range,

add 10 per cent. 6. **Shafts:** If the CD "1000 Series" motors are desired with short shaft for direct connection, specify frame with suffix letter "S."

- 7. Modifications: See page 67.
- 8. Dimensions: See page 82.
- GEM-550; GEM-920.
- Control: See page 76. 9.

10. Descriptive Bulletins: GEA-1542; GEA-1868.

GENERAL S ELECTRIC

DIRECT-CURRENT MOTOR ENCLOSURES

Protection of personnel in a factory is important. So too, is protection of the direct-current motor, from the many different adverse installation conditions which exist. Hence, all d-c motors are made so they can readily be equipped with different kinds of covers.

(1) Dripproof

With solid covers on all top ventilating openings for protection from dripping liquids.

(2) Dripproof Protected

Protection from dripping, bouncing objects, accidental entrance of hands or clothes, vermin, etc. with solid top-half covers and perforated bottom-half covers.

Dripproof, fully protected Type B or CD motors. Note solid covers on all top ventilating openings for dripproof construction and perforated protective covers for all other openings

(3) Protected

Protection of personnel and motor with perforated cover on all openings.

(4) Splashproof

Protection from hosing down or where wetness is a factor—with solid covers on all top and louver covers on all bottom openings.

(5) Self-(pipe-)ventilated Motors

For obtaining cool, clean, ventilating air. These motors are equipped with totally enclosed end shields with provision for connection of pipe for conveying air to the motor. The frame provides for discharge of air into the surrounding atmosphere, or provision may be made for connection to an exhaust air duct.

The motor fan will circulate sufficient air if relatively straight pipe of ample section, and not more than 25 ft long, is used. Pipes or ducts are not included in price addition.

This enclosure may be used on a motor rated 40 C without increase in temperature rise.

(6) Separately (Forced) Ventilated Motors

These motors are similar to the self-ventilated motors, but depend upon a separate, forced air supply for ventilation. The end shields provide for pipe connection, and the frame provides for the discharge of air into the surrounding atmosphere.

Pipes or blowers are not included in price addition. Motors rated 40 C with this type of enclosure will operate without increase in temperature rise.

Direct-current splashproof motor, Type CD, typical of "1000 Series" construction

		1			Р	rice of M	otor				
			(AFT	ER ALL AI		TS FOR EL		MODIFICA	TIONS		
		\$109 \$110 \$158 \$243 \$425 \$576 \$1030 \$1816 and to to to to to to to Below \$157 \$242 \$424 \$575 \$1029 \$1815 \$2662									
·				_	* P:	rice Addi	tions				
Dripproof—50 C—Front end Both ends	Add Add	\$1 2	\$2 3	\$3 5	\$5 8	\$7 11	\$11 19	\$19 32	\$27 45	11/2 % 2%	
Dripproof, protected—55 C—Front end Both ends Protected (semienclosed)—50 C—Front end Both ends	Add Add Add Add	2 4 2 4	4 6 4 6	6 10 6 10	10 16 10 16	14 22 14 22	22 38 22 38	38 64 38 64	54 90 54 90	3% 4% 3% 4%	
Self-(pipe-)ventilated—40 C.	Add	22	33	47	76	97	164	260	355	15%	
† Separately (forced) ventilated-40 C	Add	9	14	22	37	50	87	152	215	9%	
Splashproof—50 C—Front endBoth ends	Add Add	8 11	12 16	16 23	25 36	33 47	52 78	85 129	126 178	5% 8%	

Price Additions for Enclosures—D-c Motors

* Price additions are to be based on the price of the open, sleeve-bearing motor, but should be added to the price of the open, sleeve- or ball-bearing motor required. † Blower not included.

GENERAL 🍪 ELECTRIC

TOTALLY ENCLOSED DIRECT-CURRENT MOTORS

Standard and Explosion-proof

Just as for polyphase a-c motors, the totally enclosed construction gives real protection from adverse conditions. In addition to the standard enclosure, and the explosion-proof motor for Class I, Group D, hazardous gas conditions, General Electric builds and has had inspected and tested by the Bureau of Mines, a line of

Totally enclosed, fan-cooled d-c motor, typical of Type B

motors that is eligible, without further tests, for application to an approved power-using assembly in mines.

The smaller sizes are made in compact nonventilated construction. All the openings are covered with solid covers, so that there is no deleterious exchange of air between the inside and outside of the motor.

The totally enclosed, fan-cooled motors have a system of dual ventilation. The internal fan, located on the pulley end, draws the warm air over the windings and core and circulates it around the interior so that internal heat is given up to the frame and end shields.

The external fan draws cool air through the mesh openings in the fan guard on the commutator end and directs it over the surface of the end shield and magnet frame. Cast-iron conduit boxes, nonsparking fans, and compact, sturdy construction are used throughout.

The explosion-proof motors have extra-heavy magnet frames and special end shields of strong design. The motors for Class I, Group D, conditions have dual ventilation and special conduit boxes. The Class B motors are provided with suitable stuffing box and 10 feet of mine-type rubber-covered cable and air hose.

Totally enclosed motor of construction that has passed the inspection and test of the Bureau of Mines and is designated as Class BM

Hp,			Totally bear	Enclosed, ing, Shuni	Fan-coole -wound M	ed, Ball- lotors
Con- tinuous, 55 C	¶ Speed, Rpm	Volts	STANI	DARD	EXPLOSI	ON-PROOF
Rise	Tipin		Frame	Price	Frame	Price
1/2	850	t	*224	\$130	*224	15
3⁄4	1150 850	1	*224 *225	125 143	*224 *225	19 19
1	$1750 \\ 1150 \\ 850$	ŧ	*204 *224 225	121 143 160	*224 *224 225	
11⁄2	$3500 \\ 1750 \\ 1150 \\ 850$		*204 *225 224 254	148 135 160 272	*224 *225 224 226	100103103103
2	$3500 \\ 1750 \\ 1150 \\ 850$	+	*224 225 225 254	177 151 187 300	*224 225 225 226	********
3	$3500 \\ 1750 \\ 1150 \\ 850$	+	224 225 254 284	197 186 293 354	$ \begin{array}{r} 224 \\ 225 \\ 66 \\ 66 \end{array} $	155 115 11
5	$3500 \\ 1750 \\ 1150 \\ 850$	† † †	$ \begin{array}{r} 225 \\ 254 \\ 284 \\ 75 \end{array} $	245 305 371 447	225 66 66 67	15 1
71/2	$3500 \\ 1750 \\ 1150 \\ 850$		254 284 67 83	450 369 450 573	66 66 67 83	Company
10	$3500 \\ 1750 \\ 1150 \\ 850$	† †	$ \begin{array}{r} 284 \\ 66 \\ 83 \\ 85 \end{array} $	518 423 552 658	67 83 85	** + +++++++++++++++++++++++++++++++++
15	$3500 \\ 1750 \\ 1150 \\ 850$	† † † †	75 83 85 95	632 550 675 810	83 85 95	++ ++ Refer
20	$3500 \\ 1750 \\ 1150 \\ 850$	‡ ‡	85 85 93 95	784 637 787 999	85 93 95	±
25	$3500 \\ 1750 \\ 1150 \\ 850$	230 † †	··· 95	891 748 934 1144	95 95	ŧ
30	$3500 \\ 1750 \\ 1150 \\ 850$	230 230 230 230 230	95 103 113	997 825 1037 1276	 95	ŧ
40	$1750 \\ 1150 \\ 850$	230 230 230	$\begin{array}{r}105\\113\\123\end{array}$	1156 1241 1523		
50	$1750 \\ 1150 \\ 850$	230 230 230	$ \begin{array}{r} 115 \\ 123 \\ 135 \end{array} $	1404 1436 1755		
60	$1750 \\ 1150 \\ 850$	230 230 230	123 135 173	1512 1633 1979		

Integral-horsepower, Direct-current, Totally

Enclosed Motors

Standard or Explosion-proof, Totally Enclosed, Fan-

cooled Motors. Shunt-wound, Constant-speed, Com-

mutating-pole, Horizontal, Ball-bearing. Types B

(Frames 204 to 284) and CD (Frames 66 to 173)

Totally Enclosed Fan-cooled Ball-

ADDITIONAL INFORMATION

ADDITIONAL INFORMATION
*Totally Enclosed Motors: These motors are furnished totally enclosed (not fan-cooled) instead of totally enclosed, fan-cooled. Practically all of the motors up to and including 15 hp may be obtained in the totally enclosed (not fan-cooled) construction, if desired. However, in all cases where frames and prices are listed for the totally enclosed (not fan-cooled) construction.
2. tVoltages: These ratings are 115, 230 volts in the standard type and 230 volts only in the explosion-proof type. All motors are available in other standard voltages at increased prices.
3. tBureau of Mines: These motors have passed the inspection and tests of the Bureau of Mines and are listed as Class BM. They may be offered as eligible for ultimate approval without further test as a part of a complete power-using assembly. All other motors of the explosion-proof type are manufactured under the same standards and are of the same construction, but are offered subject to further inspection and tests.
4. §Class I—Group D: These motors are for Class I, Group D, hazardous gas conditions—tested and listed by Underwriters' Laboratories.
5. "Speed Ranges: All motors in the previous section.
6. \Dependence Ameres: Compound- and series-wound motors also available. Consult the Company for complete information.

GENERAL 🛞 ELECTRIC

PACIFIC, GENERAL ELECTRIC MOTORIZED, SPEED REDUCERS

THE Pacific, General Electric Motorized, Speed Reducer—often the most economical means of obtaining a dependable source of power for the operation of many types of machinery at low speeds — consists of a normal-speed motor in combination with a built-in reduction gear. This combination results in an integral, self-contained unit that is highly efficient, extremely compact, and sturdily built.

General Electric offers a complete line of motorized speed reducers in this design, in listed ratings from 1/6 to 50 horsepower. In practically all of these ratings, Pacific, General Electric Motorized, Speed Reducers are obtainable in polyphase, single-phase, or direct-

current types. A wide choice of output-shaft speeds between 780 and 13.5 rpm is available.

NOMENCLATURE

(Integral-hp Speed Reducers)

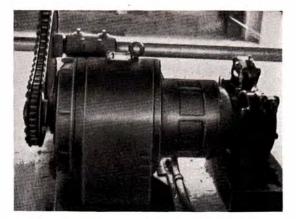
Standard const	truction, horizontal mounting
Type MS:	Single-reduction speed reducer
Type MR:	Double-reduction speed reducer
Type MT:	Triple-reduction speed reducer
Standard const	truction, vertical mounting
	Single-reduction speed reducer
Type DV:	Double-reduction speed reducer

How the Pacific, General Electric Motorized, Speed Reducer Benefits You

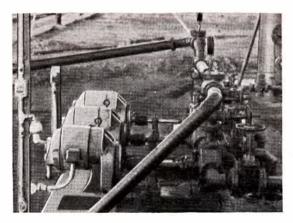
It Reduces Power Costs—Pacific, General Electric Motorized, Speed Reducers have a higher operating efficiency than any other type of low-speed drive of comparable installation cost—the motor, running at 1800 rpm, operates at maximum efficiency and power factor; and motor and gear are closely connected, minimizing mechanical losses.

It Saves Space—The gear design used permits a compact, balanced arrangement of parts and a housing of small physical proportions. Pacific, General Electric Motorized, Speed Reducers require only slightly more mounting space than standard motors.

It Minimizes Shutdowns—The simple design, careful workmanship, adequate lubrication, and ample factors of safety in all parts mean long, reliable service and freedom from production delays.


It Reduces Maintenance Costs—The inherent smoothness of operation and the sturdiness of the Pacific, General Electric Motorized, Speed Reducer permits it to operate dependably with no more attention than an infrequent change of lubricant.

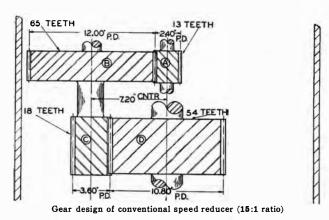
It Is Unusually Quiet—All gears running in oil, and a balanced distribution of load, eliminate the noises usually associated with geared speed reduction.


It Is Easy to Install—The integrally cast base and overhanging motors contribute to lower installation costs. Problems of leveling bases, and of providing safety devices for couplings and external spur gears are greatly simplified.

It Promotes Safety in Your Plant—The reduction or elimination of external chains, gears, or belts by a completely self-contained Pacific, General Electric Motorized, Speed Reducer means added safety for your workers.

It Is Available in a Complete Line—Practically any desired speed between 780 and 13.5 rpm can be obtained in all standard ratings—polyphase, single-phase or direct-current.

Lumber unstacker requiring frequent starting, stopping, and braking, driven by Type MR double-reduction speed reducer with high-slip motor

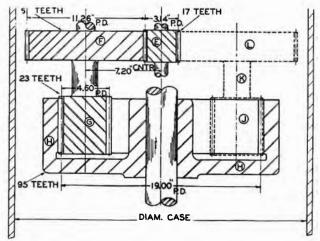

Positive-displacement rotary transfer pumps driven by Type MS single-reduction motorized speed reducers, handling crude oil

GENERAL 🋞 ELECTRIC

A study of the two gear trains illustrated readily shows the advantage of the gear design used in the Pacific, General Electric Motorized, Type MR Speed Reducers.

Both the Type MR and the conventional-type reducer-gear plans include an over-all ratio of 15 to 1.

Note that the over-all ratio, the distance between shafts, the gear centers, and the diameter of the enclos-


ing case are, as shown by both plans, identical. Yet, the pitch diameters of the driving pinions, E and G, of the Type MR design are considerably larger than the corresponding pinions, A and C, of the conventional design.

Note also that the pitch diameter of the MR internal gear, H, is 75 per cent larger than the final gear, D, of the conventional type.

This demonstrates the huge gain in available torque on the low-speed shaft of the Type MR unit.

Now, compare the capacities of the two systems under identical conditions, with similar pitches and face lengths. Any accepted gear formula used in both cases will prove definitely that the over-all capacity of the Type MR is more than 45 per cent greater than that of the conventional type.

The internal gear set offers distinct advantages over the external gear. The tooth contact is over a longer arc than with the external set. The larger-size internal gear engages a greater number of pinion teeth; it "wraps" around the pinion instead of arcing away from it. Hence, more pinion teeth of G assume the total load of gear H, minimizing the individual tooth load of G. This resists tooth wear on pinion G—and tooth wear is the main measure of success or failure of a gear set.

Gear design of Pacific, General Electric Motorized, Speed Reducer (15:1 ratio)

The internal-gear-set tooth shape lends itself to better rolling action and less sliding action than the external set. The result: Less friction and heating; greater efficiency.

The Pacific, General Electric Motorized, Type MR Speed Reducer goes a step further.

A second countershaft, JKL, is added, shown by the dotted line on the diagram of the Type MR design.

Note that this system utilizes the opposite side of the initial pinion, A, which side is idle in the conventional type. The total load, which is carried on one or more teeth on A, is now carried on E by twice the number of teeth. The individual tooth load is reduced one-half.

Likewise, the total gear load of gear D on pinion C of the conventional type is now transmitted from internal gear H to two pinions, G and J, with the same result as above.

Also, the high-speed pinion bearings for E and the low-speed-shaft bearings of H are required to assume only the outside load. Gear loads are eliminated on them because of the opposite directions of the tooth-load reactions.

GENERAL 🍘 ELECTRIC

CLASS I MOTORIZED SPEED REDUCERS Selection of Motorized Speed Reducers

A motorized speed reducer differs from a standard motor in that the gearing inserts a mechanical link of limited strength in the conversion of electric power from the source of supply to mechanical power in the output shaft. The safe limits for the duty required of motor and gear are quite dissimilar; and, in determining the safe limits for motorized-speed-reducer duty, this fact must be recognized. In a motorized speed reducer properly designed for continuous duty with a specified maximum variation of load, the gear is subject to abuse by excessive loads of any duration, whereas the continued operation of the motor is not greatly affected, except by excessive duration of overloads. Therefore, gear elements must be selected to meet safely the working stress based on peak overloads, rather than on the normal full-load torque of the motor.

The speed reducers that are listed in this catalog are Class I motorized reducers, designed to handle a wide range of applications where the speed and load are reasonably constant and do not exceed the normal rating of the motor and where the length of service does not exceed 8 to 10 hours daily. For applications that impose more severe service conditions, Pacific, General Electric Motorized, Speed Reducers are available in Class II and Class III designs.

On normal applications, motorized speed reducers can be operated in either direction of rotation, but if they are to be thus operated, it should be so specified in ordering, to permit the assembly of the gears for minimum backlash and minimum end play in the bearing assembly. The type of connection must be specified, because minimum sprocket, pulley, and pinion diameters have been established and must be observed in selecting a motorized speed reducer for connection to a given load. As regards ambient conditions, a motorized speed reducer should be selected with the same care that is used in selecting a motor.

The rules for selecting the type of motor on a motorized speed reducer (K, KH, totally enclosed, etc.) are the same as given elsewhere in this catalog for each specific type of regular motor. In general, applications requiring Types KG, KR, and M motors should be analyzed thoroughly, to decide on the proper gear type, since applications which justify such motor characteristics as these types possess usually also demand Class II or Class III gears.

FRACTIONAL-HORSEPOWER MOTORIZED SPEED REDUCERS

The line of fractional-horsepower Pacific, General Electric Motorized, Speed Reducers covers a range of standard ratings from 1/6 to $\frac{3}{4}$ hp, in polyphase, single-phase, and direct-current types. Two principal types are available, each giving the advantages of compactness, economy and dependability, and each designed for applications where its particular arrangement of parts is preferable. These types are (1) parallel-shaft, helical-gear type, giving a choice of output speeds between 780 and 125 rpm; and the dual-countershaft type, giving a choice of output speeds between 125 and 13.5 rpm.

Each of these types of motorized speed reducers consists of an efficient, normal-speed motor combined with a sturdy reduction gear, built as a single unit. A complete line of both types is available in open, splashproof, and totally enclosed construction. Motorized speed reducers for flange mounting or vertical operation are also available.

In fractional-horsepower ratings, all motors are overhung from the gear casing. Feet cast integrally with the casing permit easy mounting and provide the rigidity necessary for high-radial-thrust loads.

All standard listed fractional-horsepower motorized speed reducers are rated for normal 8 to 10 hours' continuous operation per day, with rated motor output to the gears. Listed speeds are based on full-load motor speeds of 1750 rpm.

The listing on page 55 covers Class I, fractionalhorsepower units only, and for that reason should be used only in determining prices of motorized speed reducers for standard applications. There are numerous electrical and mechanical modifications available for this Class I line. A partial list of these follows, but for specific details and pricing directions, consult the nearest General Electric office.

Electrical Modifications

- 1. Special frequencies.
- 2. Special voltages.
- 3. Special insulation.
- 4. Reversing duty.
- 5. Frequent-starting duty.

Mechanical Modifications

- 1. Special mounting positions—various types.
- 2. Nonstandard bearings.
- 3. Special gear ratios.
- 4. Motor-mounted brakes.
- 5. Low-speed shaft out opposite side from standard on right-angle-shaft motorized speed reducers.
- 6. Special shaft extensions.
- 7. Special bases.

GENERAL 🋞 ELECTRIC

General Information on Fractional-horsepower Speed Reducers, Types MS, MR, MT, MW, and MHW

Fractional-horsepower units are furnished in three types, these including the MW series with right-angle take-off shaft, MHW series with double-reduction and right-angle shaft, and the parallel-shaft types in MS and MR series.

Strength and Durability

A generous factor of safety is used in design of all housings, gears, shafts, and bearings to give utmost rigidity and the strength necessary to withstand continuous duty. The overhung load is carried by a rigid foundation base cast integrally with the gear housing.

Motors are overhung and carry only the torque loads essential to the required load. Ample oil capacity, with positive lubrication, contributes to long operating life with practically no attention beyond occasional inspection of the oil level.

· Over-all size has been minimized by compact gear arrangement, thus adding to strength and rigidity.

Efficiency

Г. Г.

.

ŀ

.

Highest transmission efficiency is obtained and maintained by use of precision-cut gears, antifriction bearings, and continuous lubrication. Continuous, low-speed, full-rated capacity is provided with utmost economy and extreme quietness.

Accessibility

Full access to gears and other parts is provided through proper arrangement of cover plates in all housings.

Application

Fractional-horsepower motorized speed reducers have a wide field of application which requires many different, and frequently unique, modifications of standard frames. Often entirely new designs are needed to meet certain conditions. When it is found that requirements cannot be met from available information, refer to the nearest G-E office.

Ratings

The input rating of fractional-horsepower speed reducers, listed on page 55, is based on the *nominal* rating of the motor to be mounted on the gear frame. The output rating of the speed reducer is the *nominal* rating of the motor minus the gear losses. The listed output ratings may be carried continuously—24 hours per day—for normal-duty loading.

Direction of Rotation

Fractional-horsepower motorized speed reducers can be operated in either direction without loss of efficiency or injury to parts. For direct-current and single-phase operation, however, the direction of rotation required should be specified, as the direction of rotation of these motors is not readily changeable.

Type MW-Single-reduction, right-angle shafts

Type MHW-Double-reduction, right-angle shafts

GENERAL 🍪 ELECTRIC

In specifying direction of rotation of motorized speed reducers, the practice is to specify the direction of rotation (clockwise or counterclockwise) when one is looking along the output shaft toward the gear housing.

Nomenclature

Fractional-horsepower, Pacific, General Electric Motorized, Speed Reducers are identified by a complete frame number; as, 1MHW-45—1MHW designating the speed reducer as a Frame 1 of Type MHW, and -45 indicating a Frame 45, Type K, KH, or KC motor. Speed-reducer frame numbers only are listed on page 55.

Gear Types

Type MS: Single-reduction, parallel shafts. Type MR: Double-reduction, concentric shafts. Type MT: Triple-reduction, concentric shafts. Type MW: Single-reduction, right-angle shafts. Type MHW: Double-reduction, right-angle shafts.

Overhung Loads

Fractional-horsepower motorized speed reducers are designed to carry overhung sprocket, gear, V-belt, or flat-belt loads without outboard bearings, provided the minimum pitch diameter and other limitations, as listed on rating page 55, are adhered to.

Lubrication

Pacific, General Electric Motorized, Speed Reducers are shipped without lubricant. Attached to each unit at the time of shipment is a *Lubrication Chart*.

The grade of lubricant recommended for various temperature conditions, and the approximate required quantity of lubricant for each speed-reducer frame size, are shown on this chart, as well as in the tabulation

Type MS-Single-reduction, parallel shaft

below. The quantity shown on this chart is in excess of the actual amount required to fill the speed reducer to the proper oil level. No more oil than that actually required to bring the oil level to the gage mark should be put into the speed reducer.

No speed reducer should be placed in service before these recommendations are followed.

Speed-reducer	10 to 40	40 to 100	100 to 140
Frame No.		t Temperature, De Viscosity (Sec at	
½ MS, 1 MS, 3 MR, 5 MR, 3 M T	250–450 SAE 20	450–600 SAE 30	750 SAE 40
½MW,1MHW	1200-1800 SAE 50	1900–3000 600W	3200-7000
Approxima	te Amounts of Oi	l Required (in Ga	llons)
1 MS-14 1 MS-14	3MR-½ 5MR-1¼	3MT-1	½ MW-1/8 1 MWH-1/2

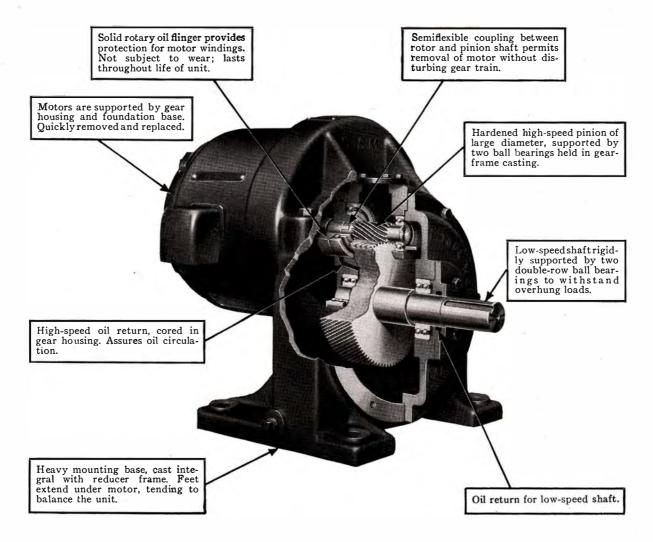
Maintenance

At the time of the initial installation, motorized speed reducers should be filled with the proper lubricant to the gage mark. After 100 hours of operation, the initial lubricant should be completely drained, the housing flushed (with a light flushing oil) and refilled with the proper oil to the gage mark. Therefore, for normal temperature and humidity conditions, *semiannual* draining will be sufficient, except for frequent inspections of the oil level. Where high, varying, or very low temperatures and/or humidity conditions prevail, special maintenance instructions should be obtained from the nearest G-E office. This is extremely important when speed reducers are intermittently in and out of operation.

Type 3 MR-Double-reduction, single countershaft, concentric

Fractional-hp Pacific, General Electric Motorized, Speed Reducers

Type K; 3- and 2-phase; 60 Cycles; 110, 220, 440, and 550 Volts Type KH; Single-phase, 60 Cycles, 115 and 230 Volts Type KC; Single-phase, 60 Cycles, 115 and 230 Volts Type BC; Direct Current; 32, 115, and 230 Volts


	H	IP		Output	STANDA	RD OPEN HO	ICE RIZONTAL MO UCERS	OTORIZED	For Totally	‡ Min.	FOR HO	OR RAILS RIZONTAL NTING
Frame No. †	Input	Output 40 C Rise	Motor Sync Speed, Rpm	Full-load Speed (Approximate) Rpm (One Only)	Type K § 220 or 440 Volts	Type KH φ115 Volts	Type KC 115 or 230 Volts	Type BC ¶ 115 Volts	Enclosing Add to Price of Open Motorized Reducer	P.D. of Sprocket in Inches	∆ No.	Add to Price of Motor- ized Reducer
1/2 MS- 1/2 MS- 1/2 MS-	1/6	0.16 .16 .16	1800 1800 1800	780, 640, 520 420, 350, 280 230,190	\$38 38 45	\$32 32 39	• · · · • · ·	\$41 41 48	\$4 \$4 5		02 02 02	\$7 7 7
⅓ M W- ⅔ M W- ⅔ M W-		.12 .10 .09	1800 1800 1800		Refer			Refer to the	Refer	$1 \frac{3}{4} \\ 1 \frac{3}{4} \\ 1 \frac{3}{4} \\ 1 \frac{3}{4}$	1199 2112	
1 MHW- 1 MHW- 1 MHW- 1 MHW- 1 MHW-	=	.13 .12 .11 .11	1800 1800 1800 1800 1800	Refer to the Company		5		Com- pany	to the Com- pany	2 1/4 2 1/4 2 1/4 2 1/4 2 1/4		
¹ / ₂ MS- ¹ / ₂ MS- ¹ / ₂ MS-	1/4	.24 .24 .24	1800 1800 1800	780, 640, 520 420, 350, 280 230, 190	39 39 47	54.5	\$34 34 42	44 44 52	4 4 4	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	02 02 02	7777
½ M W- ⅔ M W-		.18 .15	1800 1800		Refer			to the	Refer	$1\frac{3}{4}$ $1\frac{3}{4}$	• • • • •	
1MHW- 1MHW- 1MHW-		.19 .18 .18	1800 1800 1800	Refer to the Company	to the Com- pany		Com	pany	to the Com- pany	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$		
1 MHW- 1 MHW-		.17 .16	1800 1800		111 114	***	111 114	116 119	14 14	2 ¼ 2 ¼	••••	
1/2 MS- 1/2 MS- 1/2 MS-		.32 .32 .32	1800 1800 1800	780, 640, 520 420, 350, 280 230, 190	41 41 51		41 41 51	47 47 57	4 4 5	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	02 02 02	7 7 7
1/2 M W- 1/2 M W-		.26 .23	1800 1800		Refer to the Com-			to the pany	Refer to the	1 3⁄4 1 3⁄4	****	111
1 MHW- 1 MHW- 1 MHW- 1 MHW-		.25 .24 .22 .22	1800 1800 1800 1800	Refer to the Company	103 125	 	103 125	109 132	Com- pany 11 15	2 1/4 2 1/4 2 1/4 2 1/4 2 1/4		
1 MS- 1 MS- 1 MS- 1 MS-	3	.49 .49 .49	1800 1800 1800	780, 640, 520 420, 350, 280 230	52 52 61		52 52 61	58 58 67	6 6 7	$ \begin{array}{c} 2\\ 2\\ 2\\ 2 \end{array} $	204 204 204	7777
1 MS-	1	.49	1800	190	61		61 61	67 67	777	2 2	$\begin{array}{c} 204 \\ 204 \end{array}$	777
3MR-	-1	.49	1200 1800	155, 125 100	71 71		71 71	77	8	2 2¼	204 254	7
3MR- 3MR-		.48 .48	1800 1800	84 68	71 83		71 83	77 89	8 9	2 1/4 2 1/4	$\begin{array}{c} 254 \\ 254 \end{array}$	777
3MR- +		.48	1800 1800	56 45	83 100		83 83 100	89 89 106	9 9 10	2 1/4 2 1/4 2 1/4	$254 \\ 254 \\ 254 \\ 254$	7777
3MR- 5MR- 3MT- 3MT-		.48 .48 .47 .47	1800 1200 1800 1800	37, 30 25, 20 16.5, 13.5	100 111 135		100 111 135 195	106 117 141 204	10 11 12 15	21% 31/4 31/4 31/4	$254 \\ 254 \\ 2 \\ 2 \\ 2 \\ 2$	7 7 12 12
1 MS- 1 MS- 1 MS- 1 MS-	3⁄4	.73 .73 .73	1800 1800 1800	780, 640, 520 420, 350, 280 230	62 62 73	5.	62 62 73	69 69 80	8 8 8	2 2 2 2	204 204 204	7 7 7 7
1 MS-		.73	1800	190	73		73	80	8	22	$\begin{array}{c} 204 \\ 204 \end{array}$	777
1 MS- 3 MR-	-	.73 .72	1200 1800	155 125	89 89	2		96	8	2	204 254	7 7
3MR- 3MR- 3MR-		.72 .72 .72	1800 1800 1800	125 100 84	89 89 89		89 89 89	96 96 96	8 8 8	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$	$254 \\ 254 \\ 254 \\ 254$	777
3MR- 3MR- 3MR-		.72 .72 .72	1800 1800 1800	68 56 45	102 102 120	• • • • • • •	102 102 120	109 109 127	10 10 12	$2\frac{3}{8}$ $2\frac{3}{4}$ $3\frac{1}{4}$	$254 \\ 254 \\ 254 \\ 254$	7 7 7
5MR- 5MR- 3MT-		.72 .72 .70	1800 1200 1800	37, 30 25, 20 16.5, 13.5	120 137 156		120 156	127 163	12 12 15	3 14 3 14 3 14 3 14	$254\\254\\2$	7 7 12

† Reducer frame number only is shown; for frame number of complete unit add the motor frame number to reducer frame number. ‡ Minimum pitch diameters are based on radial load applied at center of shaft extension. For other than sprocket drives, use the following multipliers on values of minimum diameters listed: 1.25 for gear drive; 1½ for V-belt drive; 2.5 for flat-belt drive. § For 550 volts, add \$2.00 in ratings ½ to ½ fb incl; no addition on ½ and ¾ hp. ¶ For 32 or 230 volts, add \$1.00. △Numbers 02 and 204 to 254 are sliding bases; Number 2 are sliding rails. \$ Price for 230 volts same as for 115 volts.

GENERAL 🛞 ELECTRIC

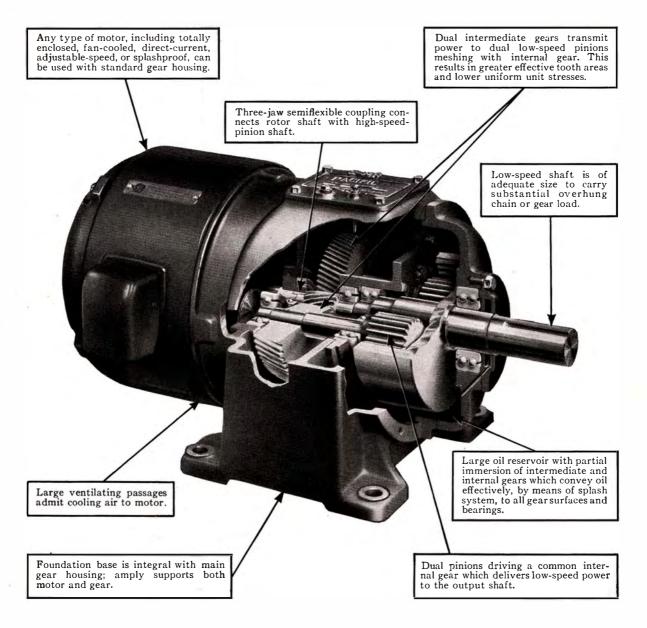
 $\frac{1}{6}$ to $\frac{3}{4}$ HP

Design Features—Integral-hp Single-reduction Unit, Type MS

Gear Assembly

In referring to the sectional view above, of a Type MS Pacific, General Electric Motorized, Speed Reducer, observe that the high-speed pinion and the lowspeed output gear and shaft are mounted in the vertical center line of the gear housing, with the gear directly below the pinion. Each shaft—that is, the high-speed pinion shaft and the low-speed output shaft—is supported by two correctly selected and fitted ball bearings.

This method of gear assembly is unusually advantageous, since it permits:


- (a) Inspection of tooth surfaces through the topsight cover plate.
- (b) Removal of pinion and gear without disturbing rotor or stator.

(c) Substantial overhung loads on the output shaft, because the load center is close to the foundation base.

Lubrication

The bottom of the Type MS gear housing is inclined downward and toward the motor, thus providing a large oil reservoir. Also note that ample oil-return passages are cored in the gear housing, providing for adequate oil circulation through and around all bearings. The low-speed gear, partially submerged in the lubricant, becomes an oil flinger, spraying oil over the entire housing. In this manner, a continuous flow of lubricant is maintained over all working parts.

Design Features—Integral-hp Double-reduction Unit, Type MR

Type MR, double-reduction, Pacific, General Electric Motorized, Speed Reducers are designed with great care and consideration of the important factors in the production of a power transmission having high efficiency, ample capacity at all ratings, adequate life, compactness, rigidity, and accessibility.

Standard construction is with motor connected to, and supported by, the gear housing. The rotor shaft and the high-speed-pinion shaft are connected by a three-jaw semiflexible coupling machined as an integral part of these two rotating elements. Therefore,

(a) Stators can be quickly serviced or replaced with spare stators with or without feet, independently of rotor, gearing, or connection to driven machine.

- (b) High-speed pinion, bearings, or other gearhousing parts can be serviced without interference with rotor or stator.
- (c) Motor-frame stresses are minimum, as hightorque stresses of output shaft are *not* transmitted to motor frame.

The high-speed pinion, integral with the pinion shaft, is supported by two carefully selected ball bearings. This method of mounting driving pinions assures:

- (a) Minimum gear vibration.
- (b) Limited possibility of shaft deflection caused by bending movement; and
- (c) Uniform contact of teeth over full width of pinion.

GENERAL 🋞 ELECTRIC

Class I Integral-hp Speed Reducers—3- and 2-phase; 60 Cycles; 110 (326 Frame and Smaller), 208, 220, 440, and 550 Volts

	_	1 HP				1	1½ HP					2 HP		
	1	Horizontal					Horizonta	1				Horizonta	1	
0		TOTA		Verti-	0		TOTA	ALLY OSED	Verti-	Outout		TOTA		Vert
Output Speed, Rpm	0-	ENCLO		cal	Output Speed, Rpm	0.000	ON		cal	Output Speed, Rpm	0.000		OOLED	cal
Rpm	Open	Standard	Explo-	0.000	Rpm	Open	Standard	Explo-	Open	Rpm	Open	Standard	Explo-	0.000
		Standard	sion- proof	Open			Standard	sion- proof	Open			Standard	sion- proof	Oper
		Frame 11	MSA203 *				Frame 2	MSA204				Frame 2M	ISA224 ‡	
780	\$ 81	\$ 89	\$105	Refer to	780	\$ 95	\$105	\$123	Refer	780	\$110	\$139	\$157	Ref
$640 \\ 520$	82 83	90 91	106 107	Com-	640	97	107	125	to Com-	$640 \\ 520$	112 114	141 143	159 161	Con
) pany	520	99	109	127) pany				163) par \$14
$\frac{420}{350}$	84 86	93 95	109 111	\$103 105	$\frac{420}{350}$	102 104	113 115	131 133	\$123 126	420 350	116 120	145 150	168	14'
280 230	88 91	97 100	113 116	108 111	280 230	107 113	118 125	136 143	129 136	280 230	124 130	154 161	172 179	152
200					190	115	127	145	139	190	133	164	182	163
		Frame 2	MSA203									Frame 2	MSA225	
190	94	104	120	115			Frame 2	MSA224		155	140	172	190	17
		Frame 2	MSA204	t	155	120	132	150	145	100	140			1.1
1.55												Frame 5	MSA225	
155	98	108	124	120			Frame 3	MRA204		125	147	179	197	180
		Frame 3	MRA203	*	125	126	139	157	152			Frame 5M	(RA224 †	
125	103	113	129	126	100	134	148	166	162		-			
100 84	112 114	123 126	139 + 142	137 139	1000		Frame 5	MRA204	+	$100 \\ 84$	160 163	194 197	212 215	198
68	120	132	148	146				1	4.4.5	84 68 56	171 181	206 217	224 235	199 209 221
		Frame 51	MRA203	*	84 68	140 144	154 159	172 177	169 174	45	188	225	243	22
50	107			1	56 45	157 163	173 180	191 198	189 196			Frame 9M	ARA224 †	
$56 \\ 45 \\ 37$	127 136 144	140 150	156 166 175	155 165	37	174	192	210	210		-			1
37	144	159	175	175	-					37	201	239	257	24
1		Frame 51	MRA204			-	Frame 5	MRA224			2	Frame 9	MRA225	
30	154	170	186	187	30	186	205	223	238	30	215	254	272	26
1		Frame 31	MTA203	F			Frame 5	MTA204	t			Frame 5M	1TA224 ‡	
25	164	181	197	203	25	198	218	236	242	25	228	269	287	284
25 20	176	194	210	217	25 20	213	235	253	260	$25 \\ 20 \\ 16.5$	248	291	309	284 304
16.5 13.5	189 202	208 222	224 238	233 249	$\substack{16.5\\13.5}$	229 243	252 268	270 286	287 303	13.5	266 283	310 329	328 347	336 356
		3 HP					5 HP					7½ HP		
		FAN-CO				_		ENCLOSED, OOLED				TOTALLY I		
	1	Frame 2				1		MSA254				-	MSA284	
780	\$127	\$157	\$175	Refer	780	\$157	\$194	\$216	Refer	780	\$198	\$248	\$272	Rei
640	129	159	177	} to Com-	640	159	196	218	Com-	640 520	201	251	275	
520 420	131 133	161 163	179 181	pany \$162	520 420	162 165	199 202	221 224	pany \$205		205 210	255 261	279 285) par \$261
350	135	166	184	164	350	168	206	228	208	420 350	214	265	289	26
280	138	169 Frame 5	187	168	280 230	171 175	209 213	231 235	212 217			Frame 1		× .
230	145	177	195	176	190	183	222	244	226	280 230	218 222	270 274	294 298	27
190	147	179	197	179			1	MSA284		190	232	285	309	28
155	160	Frame 5	MSA254 207	189	155	194	234	256	240			Frame 10	JIVISA324	
125	156 166	200	218	201				MRA254	054	155	247	302	326	30
		Frame 5			125 100	206 221	248 264	270 286 299	254 272			Frame 9	MRA284	
$100 \\ 84$	177 186	212 222	230 240	215 225	84	233	277		286	$\frac{125}{100}$	262 282	318 340	342 364	32: 34'
68	199	236	254	241 255		0.47	Frame 9	MRA254 315	303	84	296	355	379	36
56	211	249 Frame 9]	267	200	56	247 263	310	332	322	68 56	309 335	370 398	394 422	37
45	226	266	284	273	$45 \\ 37$	283 301	332 352	354 374	346 368				5 M K A 284	
37	241	282	300	291			Frame 9	MRA284		$\frac{45}{37}$	359 382	425 450	449 474	43
		Frame 9	MRA254		30	323	376	398	400			Frame 18		
30	259	302	320	320			Krame F	MTA254		30	404	474	498	50
		Frame 5	MTA225				Ĺ	1						
25	274	319	337	344	25	346	402	424	435	25	440	Frame 9.	538	54
$\begin{smallmatrix} 20\\ 16.5 \end{smallmatrix}$	296 321	343 370	361 388	369 407			Frame 9	IVITA254		$25 \\ 20 \\ 16.5$	457 512	533 593	557 617	56 64
		Frame 9			20	361	418	440	456	10.0			5 MTA284	0.4
					10 -	400		486	503			1		
13.5	341	392	410	431	$ 16.5 \\ 13.5 $	403 421	464 484	506	525	13.5	525	607	631	65

* For totally enclosed units, motors are built in Frame 204.
† For totally enclosed units, motors are built in Frame 224.
‡ For totally enclosed fan-cooled units, motors are built in Frame 225.

GENERAL 🍘 ELECTRIC

GO-7

Class I Integral-hp Speed Reducers—3- and 2-phase; 60 Cycles;

GENERAL 🍘 ELECTRIC

110 (326 Frame and Smaller), 208, 220, 440, and 550 Volts

		1	LO HP				_	-	15 HP					20 HP			_
			Horizonta	ıl					Horizo		-			Horizon		Verti-	
Outpu Speed Rpm	ut d,	Open	ENCI	ALLY LOSED,		erti- cal	Output Speed, Rpm	Open	E	OTALLY NCLOSED, N-COOLED	Verti- cal	Output Speed, Rpm	Oper	ENG	TALLY CLOSED, COOLED	cal	_
pm			Standard	Expl sion proc	1- O	pen		in the state of the	Stand	ard sion- proof	Open	Kpm		Standar	d sion- proof	Open	
			Frame 1	OMSAS	324				Fram	e 10MSA32				Frame	20MSA364		_
780 640 520 420		\$241 245 249 253	\$307 312 316 321	\$33 34 34 35	3	Refer to Com- pany 314	$780 \\ 640 \\ 520 \\ 420$	\$291 296 301 306	37	5 396 401	Refer to Com- pany \$373	780 640 520	\$343 348 353	445 451	\$485 490 496	Refer to Com- pany	
$\frac{350}{280}$		257 262	325 330	35	6	319 325	350			3 409 e 20MSA32	375	420 350 280	360 366 373	465	503 510 518	\$445 453 461	
$\begin{array}{c} 230 \\ 190 \end{array}$		267 278	336 348	36		331 344	280	316	38	7 418	385 401	- 230 190	391 393	492	537 540	461 483 485	
			Frame 1	OMSA	326		$230 \\ 190$	329	40	9 440	409		_	Frame	20MSA40	4	-
155	i	295	367	39		364	155	356		20MSA36	433	1 55	418	522	567	515	
125		313	Frame 9 387	MRA3		386	100			15MRA32				Frame	15MRA36	4	
100 84		234 350	410 427	44	1 .	411 430	$125 \\ 100$	381 409	48	9 520	463 497	125 100	444 497	609	596 654	546 610	
			Frame 1	5MRA	324		84 68	424	53	5 566	515 547	84 68	500 528		657 688	613 647	_
68 56		373 395	453 477	48	8	458 484	56	481	Fram	8 599 e 35MRA3	583 26	56	- 588		35MRA36	4 719	_
45 37		428 448	513 535	54 56		524 548	45 37	511	60		619 661	45 37	598	720	765	731 805	
30		483	Frame 9	MTA3		-		_		35MRA36		-		Frame	15MAA36		
25		483 513	607	63		590 639	$30 \\ 25$	586 616	684 717		722 769	30 25	683 758	896	859 941	844 949	
			Frame 1							15MTA32		20	786	927 Frame	972	983	-
20 16. 13.	.5	553 598 633	651 700 739	68 73 77	1 1	687 752 794	$20 \\ 16.5 \\ 13.5$	621 726 756	83	869	775 916 952	16.5 13.5	878	1028	1073 1079	1114	-
10.	.0	25 HP		<u> </u>		194 1	30 HP	100	1	502	40 HP	, 15.5	1 003) HP	1120	=
	1	Horizon				1	Horizonta	1		I	Iorizontal			Horiz		1	- 1
out- put peed pm	Open	ENCL FAN-C	ALLY LOSED, COOLED	Verti- cal	Out- put Speed	Open	TOTAL ENCLO FAN-CO	SED,	erti- cal Ou Spo Rg	it	TOTALL ENCLOSE FAN-COOL	ED, Cal	Out- put Speed	T El FA	OTALLY NCLOSED, N-COOLED	Verti- cal	_
pm		Stand- ard	Explo- sion- proof	Open	Rpm		Stand-	Explo- sion- proof	pen		ard s	roof	Rpm	Open Sta ar		Open	
		Frame	20MSA3				Frame 20			F	rame 20M			Fra	me 20MS.	A445	
80 40 20	\$387 389 391		\$529 532 534	Refer to Company	780 640 520	\$473 475 477	\$585 587 589	\$651 653 655	Company 55 54 55 55	0 540	693	882 882 Refer to Company	780 640 520		52 \$943 53 944 55 946	Refer to Company	1
20 50	407 414 421	514	559	\$497 505	$\frac{420}{350}$	502 512	617 628		507 519	F	rame 50M			Fra	me 50MSA		-
80	432	534		513 527	280	519	Frame 50	and the second second	42 31 25	0 602	761	807 \$682 852 731	420	657 8	84 975	\$781	100
90	449		0MSA36		230 230 190	542 557	661	727 (555 28 573 19	0 622	783	860 739 874 755 904 787	350 280	706 9 711 9	38 1029 13 1034	840 846	(
00	-		5MRA36			-	rame 501				ame 50M		230 190	736 9 766 10	71 1062 04 1095	876 912	4
55 25	477 504	583	628 658	581 613	155	-	705 Frame 15		18		840			Fra	me-Refer Company	to	alle
20 00 84	554 564	668	713 724	673 685	125		743	809 1	45	Concerned and the	ame 35M		155	801 10	12 1133	954	1
			5MRA36		1.00		rame 35		12		904 959 10 998 10	995 887 050 947 089 989		Fra	me 50MR	445	R
68 56	604 659	723 784	768 829	733 799	$100 \\ 84 \\ 68$	691 713 727	849	915 8	34 60		ame 50M		125 100	921 11	08 1199 74 1265	1026 1098	- 0
	-		OMRA40		- 56	839	987	1053 10	011 - 6	8 872	1058 1	149 1055	84 68	966 12 1031 12	24 <u>1315</u> 95 1386	1152 1230 1348	and the second
45 37	686 739	813	858 917	831 895	45 37	847	Frame 50	1062 10	21 4	6 957 5 977	1152 1 1174 1	243 1157 265 1181	56	1129 14	03 1494 me—Refe		-6
37 1		Frame	Refer to	7	37	944	1103 Frame—I	1169 11	.37	J. F	rame—Re Compar				Company		
37		Com	ipany				Comp	any		7 1078		376 1302		1181 14 1276 15	65 1656	1410 1524	1
37 30 25 20	784	921 987	966	960 1047	$\frac{30}{25}$	960	1120		72 3 38 2	0 1142 5 1235		446 1400 548 1512	$\begin{array}{c c} 30 \\ 25 \end{array}$	1371 16 1471 17	59 1760 79 1870	1659 1779	Im

GO-7

INDUCTION MOTOR-GENERATOR SETS *3-bearing, 40 C, Continuous-rated **SLEEVE BEARINGS**

60 Cycles—3- or 2-phase Induction Motor, Shunt- or Compound-wound D-c Generator

		Gener-		мот	OR		Prices with Gene						мото	R		Prices ith Gen		
Kw	Speed, Rpm	ator Type and	Hp	Type and	Volts	GENERATOR VOLTS		Field Rheostat Only GENERATOR VOLTS		Kw	Speed, Rpm	Generator Type and	Ηp	Type and	Volts		Rheosta	
		Frame		Frame		125	250	125 /- 250	1		Frame		Frame		125	250	125 /- 250	
0.050	1725	BC-42		K-43	110, 220 440, 550	\$63 65	† \$65 † 67		30	1800	CD-93Y	50	K-405S	220, 440, 550 2200	\$1282 1438	\$1242 1398	\$1403 1559	
0.100	1725	BC-42		K-43	110, 220 440, 550	65 67	† 67 † 69		40	1800	CD-95Y	60	K-444S	220, 440, 550 2200	1500 1643	1453 1596	1622 1765	
0.150	1725	BC-44		K-45	110, 220 440, 550	72 74	† 74 † 76	· · · · · · ·	40	1200	△CD-1129	60	K-505S	220, 440, 550 2200	1814 1956	1756 1898	1925 2067	
0.200	1725	BC-46		K-45	110, 220 440, 550	86 89	† 88 † 91	·····	50	1800	△CD-1126	75	K-455S	220, 440, 550 2200	1740 1879	1635 1774	1817 1956	
0.300	1725	BC-66		K-63	110, 220, 440 550	105 109	† 108 † 112	••••	50	1200	△CD-1131	75	K-542S	2200 220, 440, 550 2200		2007 2160	2189 2342	
0.500	1725	BC-74		K-73	110, 220, 440 550	132 132	† 135 † 135	•••••	60	1200	△CD-1133	100	K-544S	220, 440, 550	2522	2375	2587	
0.750 1 1½ 2 3	1800	B-204Y B-204Y B-224Y B-225Y B-254Y	$ \begin{array}{c} 1 \frac{1}{2} \\ 2 \\ 3 \\ 3 \\ 5 \end{array} $	K-204 K-224 K-225 K-225 K-254	110,220, 440, 550	197 223 254 277 370	197 223 254 277 370	\$324 355 460	75	1200	∆CD-1235	125	K-546S K-548S	2200 220, 440, 550 2200	2661 2937 3065	2514 2768 2896	2726 3008 3136	
5 7½	} 1800 {	B-284Y CD-73Y	15	K-284 K-326	} 220, { } 440, {	460 559	460 559	562 688	100	1200	△CD-1242	150	K-557S	220, 440, 550 2200	3506 3624	3300 3418	3584 3702	
10 15	່ (1800	CD-73Y CD-75Y	15 25	K-326 K-364S) 550 () 220,440, (617 782	617 782	753 925	125	1200	△CD-1345	200	K-559S	220, 440, 550 2200	4344 4410	4096 4162	4420 4486	
20 25	1800 1800	CD-83Y	30 40	K-365S K-404S) 550 { 220, 440, 550 2200	930 1085 1241	930 1085 1241	1080 1241 1397	150	1200	△CD-1444	250	K-559AS	440, 550 2200	5004 5004	4717 4717	5074 5074	

60 Cycles—Single-phase A-c Motor, D-c Generator

				MOTOR		P	rices	Approx Ship. Wt of Set in Lb	
Kw	Speed, Rpm	Generator Type and		Type			Generator costat Only		
		Frame	Hp	and Frame	Volts	GENERAT	TOR VOLTS		
				Flame		125 250			
0.050	1800	BC-42		KH-43	110 220	\$58 59	† \$60 † 61	80 80	
0.100	1800	BC-42		KH-47	110 220	61 62	† 63 † 64	89 89	
0.150 0.300 0.500	1800 1800 1800	BC-44 BC-66 BC-74		KC-47 KC-63 KC-75	110/220 110/220 110/220	72 105 134	† 74 † 108 † 137	$\begin{array}{c}105\\184\\235\end{array}$	
0.750 1 1½	1800 1800 1800	B-204Y B-204Y B-224Y	$\begin{array}{ccc}1&1/2\\2\\3\end{array}$	SCR-224 SCR-A225 SCR-A225	110/220 110/220 110/220	206 243 291	206 243 291	330 350 390	
2 3 5	1800 1800 1800	B-225Y B-254Y B-284Y	$ \begin{array}{c} 3 \\ 5 \\ 7 1/2 \end{array} $	SCR-A225 SCR-254 SCR-324	110/220 110/220 220/440	314 436 561	314 436 561	450 580 640	

* Sets with Type BC generators are 2-unit, 4-bearing. If speed-limiting device is wanted on set rated 100 kw or less, add \$75 to the price of the set. Speed-limiting device is included in prices of 125- and 150sets.

kw sets. Prices include CR8000-B1 rheostat with operating mechanism for back-of-board mounting, except for sets smaller than 1 kw, which should have \$7.00 added for price of rheostat. Prices of 3-wire generator sets include autotransformer for 10 per cent unbalanced current in the neutral. † Price also applies to 36-volt generators. △These frame sizes are for 250-volt generators only. 125-volt and 125/250-volt generator frame sizes will be larger.

General Electric can supply practically any kind of unit or group of units to meet unusual requirements. However, the user can often directly benefit by selecting standard listed equipment, in the design and manufacture of which standard motors and generators are employed as far as possible. A selection of the most popular standard sets is listed on this page.

A typical small induction motor-generator set

GENERAL B ELECTRIC

DIRECT-CURRENT GENERATORS AND EXCITERS

For Belt Drive or †Direct Connection

Shunt- or Compound-wound- \triangle Commutating Poles Horizontal, Open Type—Two Sleeve Bearings

Type BC (Frames 42 to 74) Type B (Frames 202 to 284) Type CD (Frames 73 to 175)

	17-1		Pri	ices	PRICE	P11		. Ver		Pri	ces	PRICE	Full-
Frame	Kw Con- tinuous, 40 C	¶Speed, Rpm		TOR WITH HEOSTAT	ADDI- TIONS	Full- load Amp at	Frame	Kw Con- tinuous, 40 C	¶Speed, Rpm	GENERAT FIELD R	TOR WITH HEOSTAT	ADDI- TIONS	load Amp at 125
	C Rise		125 Volts	250 Volts	125 /250 Volts	125 Volts		C Rise		125 Volts	250 Volts	125 /250 Volts	Volts
42 42 44 46 66	0.050 0.100 0.150 0.200 0.300	1725 1725 1725 1725 1725 1725 1725 1725	\$25 25 28 31 39	†\$27 †27 †30 †33 †42	····· ···· ····	$0.4 \\ 0.8 \\ 1.2 \\ 1.6 \\ 2.4$	93 1126 1129 1133	15	850 700 575 500	\$674 770 863 968	\$674 770 863 968	\$143 143 143 143 143	120 120 120 120
74 ‡202 204 224	0.500 1	$ \begin{array}{r} 1725 \\ 3600 \\ 1750 \\ 1450 \\ \end{array} $	51 100 116 121	†54 100 116 121	····· ····	4 8 8 8 8	‡83 83 85 93	20	$3600 \\ 1750 \\ 1450 \\ 1150$	835 538 594 673	589 538 594 673	124 150 150 150	160 160 160 160
224 226 ‡204	11/2	1150 850 3600	136 208 115	136 208 115	···· ····	8 12	95 1129 1133 1138		850 700 575 500	794 904 1008 1134	794 904 1008 1134	150 150 150 150	160 160 160 160
224 225 226 284		$1750 \\ 1450 \\ 1150 \\ 850$	133 144 157 229	133 144 157 229	···· ····	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	‡83 85 93 95	25	$3600 \\ 1750 \\ 1450 \\ 1150$	933 616 675 768	659 616 675 768	137 156 156 156	200 200 200 200
225 254 254 284	2	$3600 \\ 1750 \\ 1450 \\ 1150 \\ 850$	129 150 215 229 252	129 150 215 229 252	···· ···· ····	16 16 16 16 16	1129 1133 1138 1235		850 700 575 500	901 1019 1139 1273	901 1019 1139 1273	156 156 156 156	200 200 200 200
$224 \\ 254 \\ 254 \\ 254$	3	3600 1750 1450	174 229 247	174 229 247	 	24 24 24	†85 †93 95 1126	30	$3600 \\ 1750 \\ 1450 \\ 1150$	1047 709 788 892	718 675 750 849	147 161 161 161	240 240 240 240
284 66 73		1150 850 700	265 299 348	265 299 348	···· ····	24 24 24	1133 1136 1235		850 700 575	1048 1195 1337	998 1139 1273	161 161 161	240 240 240
$254 \\ 284 \\ 284 \\ 66$	5	$3600 \\ 1750 \\ 1450 \\ 1150$	296 280 300 332	296 280 300 332	···· ···· ····	$ \begin{array}{r} 40 \\ 40 \\ 40 \\ 40 \end{array} $	1238 1238 193 195 1129	40	500 3600 1750 1150	1504 1271 835 1048	1433 830 795 998	161 169 169 169	240 320 320 320
67 83 85 85		850 700 575 500	378 437 494 558	378 437 494 558	···· ····	40 40 40 40	1136 01235 1337 1341		700 575 500	1252 1428 1608 1804	1193 1360 1532 1718	169 169 169 169	320 320 320 320 320
$284 \\ 66 \\ 66 \\ 67 \\ 67 \\ 67 \\ 67 \\ 67 \\ 6$	71⁄2	$3600 \\ 1750 \\ 1450 \\ 1150$	393 332 362 402	393 332 362 402	\$97 109 109 109	60 60 60 60	193 #1126 #1131	50	3600 1750 1150	1422 992 1264	938 901 1150	182 182 182	400 400 400
83 85 93 93		850 700 575 500	466 535 600 678	466 535 600 678	109 109 109 109	60 60 60 60	$ heta 1138 \\ 1238 \\ 1438 \\ 1441 \\$		850 700 575 500	1517 1730 1943 2194	1379 1573 1767 1994	182 182 182 182	400 400 400 400
284 67 67 75	10	$3600 \\ 1750 \\ 1450 \\ 1150$	436 380 414 465	436 380 414 465	100 136 136 136	80 80 80 80	θ‡ 1129 θ§ 1133 θ1235	60	$1750 \\ 1150 \\ 850$	1140 1414 1694	1036 1286 1540	212 212 212	480 480 480
83 93 95		850 700	538 626 697	538 626 697	136 136 136 136	80 80 80	1337 1441 1539		700 575 500	1942 2180 2436	1765 1982 2214	212 212 212	480 480 480
1126	15	575 500 3600	597 784 506	597 784 506	136 136 117	80 80 120	θ \$1131 θ \$1235 θ1337	75	1750 1150 850	1375 1626 1953	1250 1479 1775	240 240 240	600 600 600
‡73 75 83 85	10	1750 1450 1150	467 511 578	467 511 578	143 143 143	120 120 120 120	1441 θ1539 θ1543		700 575 500	2228 2494 2795	2026 2268 2541	240 240 240	600 600 600

* Price also applies to 36-volt generators.
 * Price also applies to 36-volt generators.
 * Bool-rpm generators listed on this page are not suitable for use as direct-connected exciters with synchronous motors or a-c generators.
 * For direct connection only. Not recommended for belt drive.
 * Not recommended for 2-bearing belt drive.
 * Not recommended for 2-bearing belt drive.
 * The speeds listed are those recommended for belt drive, except ratings marked (‡). However, when machines are direct-connected, either listed speed or nearest synchronous speed may be used.
 △Generators listed below 1 kw do not necessarily have commutating poles.
 Price includes generator and Type CR8000-B1 rheostat with operating mechanism for back-of-board mounting (on generators rated 1 kw and larger only). For generators smaller than 1 kw, add \$7.00 for price of neostat.
 Prices of 3-wire generators include autotransformer for 10 per cent unbalanced current in the neutral.
 \$\$\phi\$ Generator price includes solid base with slotted holding-down-bolt holes. For dimensions, see pages 82, 87, and 88, \$\$\$\theta\$ Frames listed are for 250 volts; frames for 125-volt generators are slightly larger.

0.050 to 75 Kw

MODIFICATIONS AND ACCESSORIES

Fractional-hp Motors and Gear-motors

Apply only to motors listed on pages 23, 24, 38, 39, and 44.

Orders Less Than 200 Units

In order to make *quicker shipments* to purchasers from factory or warehouse stocks of motors, motor parts, generators, or motor-generator sets, ordered in less than 200-lot quantities, the Company will, at its own option, make substitutions of stock models under the following conditions:

- 1. Orders received for motors of one rotation when the opposite rotation is in stock, and when rotation can be readily changed externally, will be filled using motors with stock rotation. (Motors, are normally connected for counterclockwise rotation facing end opposite shaft extension.)
- 2. Orders received for plain, round-frame motors, or for motors with resilient or belt-tightener bases, which can be filled from stock by supplying motors equipped with Neoprene rings with the proper base shipped separately, will be filled in this manner.

- 3. Orders received for stock motors with cord sets, toggle switch, Thermo-Tectors, or a combination of these accessories, will be filled by shipping the accessories separately.
- 4. Stock motors arranged for horizontal operation will be furnished on orders calling for side-wall or ceiling mounting, when such motors can be readily changed for side-wall or ceiling mounting.
- 5. Orders for motors in 40-diameter frames with built-in overload device, may be supplied with externally mounted Thermo-Tector when models with built-in overload devices are not available.

Many kinds of special motors are made by General Electric. While standard G-E motors are generally considerably lower in price, many times the quantities involved or benefits gained from their use will justify the purchase of special motors.

1. THERMO-TECTORS

Automatic-reset and Manual-reset Thermal Overload Switches

Built-in Overload Protection for G-E Fractional-hp, Single-phase Motors

To provide a satisfactory means of protecting singlephase fractional-hp motors from overloads, General Electric can furnish either automatic-reset or manual-reset thermal overload switches. These switches are built inside the motor end shield where they can closely follow the winding temperature of the motor. When the motorwinding temperature becomes excessive, the switch opens and removes the motor from the line.

Illustrating location of Thermo-Tector in motor end shield

If the motor is equipped with the automatic-reset type of overload switch, the motor is automatically restored to the line when the windings cool to a safe operating temperature. If the motor is equipped with the manual-reset type of overload switch, it is necessary to reset the switch manually before motor service is restored.

The Company reserves the right to furnish externally mounted Thermo-Tectors, instead of the built-in type, at the same price.

	* Class B	† Class C
Single-voltage Automatic-reset	\$0.50 .70	\$0.85 1.10
Dual-voltage Automatic-reset Manual-reset	.70 .85	.85 1.10

* For ½-hp, 3450-rpm; ½-hp, 1725-rpm; ¼-hp, 1140-rpm; ½-hp, 860rpm; 60-cycle, and smaller. † For ¾-hp, 3450-rpm; ½-hp, 1725-rpm; ⅓-hp, 1140-rpm; ¼-hp, 860rpm; 60-cycle, and larger.

What built-in overload protection will do for motorized machines:

- 1. Protect the driving motors against burnouts caused by sustained overloads, low voltage, etc.
- 2. Maintain maximum performance of machines up to the danger point without premature service interruptions.
- 3. Eliminate service expense—the cost of one service call or for one motor burnout will pay for overload protection on many motors.
- 4. Automatic-reset type returns the motor to the line when it cools to a safe temperature—no attention by the operator is required to restore a machine to service.

Facts you should know about the built-in overload switches.

- 1. Complete overload protection is provided.
- 2. Automatic reset means minimum lost time and service interruption.
- 3. Positive snap action, and pure-silver contact tips assure long, dependable operating life.

62

GENERAL 🏀 ELECTRIC

G-E MOTOR CATALOG, GEA-624E

ERRATA

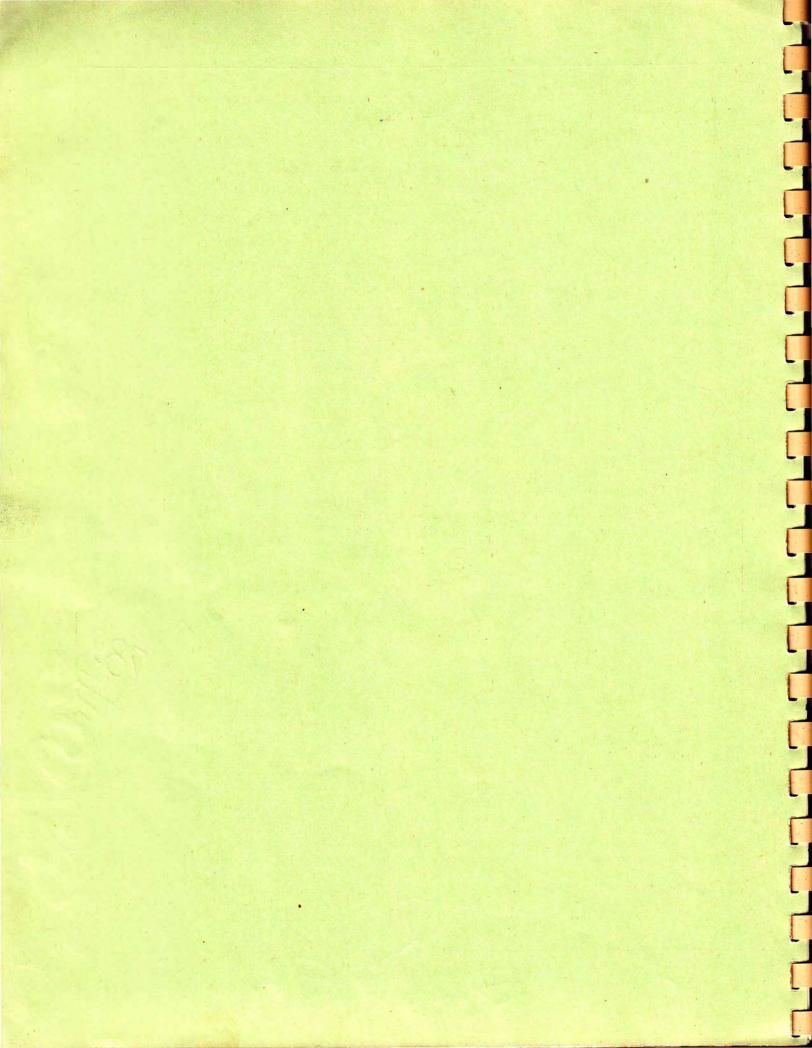
For "Modifications and Accessories" Section, Pages 64-69

Pages 64-69:

Open motors, Frames 364-445, listed on page 27, have modifications based on the following frame sizes, instead of the frame sizes listed on that page.

	A CONTRACTOR OF	SPEED, RPM											
Нр	3600	1800	1200	900									
18-1	FRAME SIZE												
10 15	• Use Frame Size Page 2		365	365 404									
20 25	F State	365	404 405	405 444									
30 40	365 404	405 444	444 445	445 504									
50 60	405 444	445 504	504	Tinted and									
5 100	445 505 Use Frame Sizes Listed on Page 27												

Page 66: Additions for dynamic balancing, page 66, apply to squirrel-cage motors only. Page 67:


Prices for bases and pulleys, page 67, should be as follows. Price Additions to Motor Only Integral-horsepower Motors

ALTERNATING-CURRENT	and the second se
Price of Base	Price of Pulley
\$6	\$2
6 6 10 13 13	2 2 4 5
13	5
15	5
17 19 19 22	7 7 8 16
	Price of Base \$6 6 10 13 13 13 13 15 17 19

Γ.

Page 69: The price additions for face-type and flange-type end shields on d-c motors, page 69, should be corrected as follows.

	NEN	A Style B Fla	inge with Ma	chining	ining						
Motor Frame or Price	to the second	NO. OF	MOTORS		NO. OF MOTORS						
	1	2-4	5-24	25 or More	1	2-4	5-24	25 or More			
203, 204	\$9	\$8	\$6	\$5	\$3	\$3	\$2	\$2			
224, 225, 226	12	10	8	.7	4	3	3	2			
254	16	14	11	9	5	4	4	3			
284	20	17	13	11	6	5	5	4			
\$261-340	24	20	15	12	8	7	6	5			
\$341-424	32	25	18	18	10	9	7	7			
\$425-575	38	30	21	21	12	11	8	8			
\$576-750	46	36	36	36	15	13	13	13			
\$751-1250	56	46	46	46	18	15	15	15			

2. TWO-CONDUCTOR CORD AND PLUG Cord Sets—Including Plug

 A. Addition for Standard 8-foot (or less) Length 	TYPE SJ 40% RUBI	SPECIAL BER JACKET	TYPE S 40% RUBBER JACKET
(Shipped separately on lot 249 or less) (Shipped attached on lot 250 up)	No. 18 Awg	No. 16 Awg	No. 14 Awg (½ Hp Up)
2-conductor with plug 3-conductor with 2-prong plug. Tip on ground lead 3-conductor with 3-prong plug	\$0.40 .75	\$0.40 .75 .90	\$1.50 2.00

B. Cord Sets Less than Eight Feet in Length-Use price additions above.

C. Cord Sets More than Eight Feet in Length—Standard cord sets are made up in large-quantity lots in eight-foot lengths. However, where cord sets longer than eight feet are required, they must be made up for each order. Refer to the Company for price.

3. SPLASHPROOF ENCLOSURE—\$3.00

4. TUMBLER SWITCH

Features

1. Easily mounted on standard motor.

Positive snap-action mechanism. 2.

3. Completely mounted in substantial steel case.

Replaces standard terminal-box cover plate. 4.

Simple to install-no solder connections or 5.additional wiring.

4A. PRICE ADDITIONS FOR TUMBLER SWITCH (ITEM 4 ABOVE)

	CI See "Clas	ASS B Ratings s" column motor LOTS	Only price pages	Cl See "Clas	LASS C Ratings (s" column motor LOTS	s Only or price pages			
	1	2-4	5-24	1	2-4	5-24			
(Shipped separately) For mounting on terminal box or conduit box, a-c and d-c: Single-pole: ¼-hp, 1725-rpm and smaller ¼-hp, 1725-rpm; ¼-hp, 3450-rpm and larger Double-pole	\$0.80 1.00 1.35	\$0.80 1.00 1.35	\$0.80 1.00 1.35	\$1.00 1.35	\$1.00 1.35	\$1.00 1.35			

5. SPECIAL SHAFT LENGTH

	Fo See "Clas	or CLASS B Rati s" column motor LOTS	ngs Only price pages	For See "Clas	CLASS C Ratings Only ss" column motor price pages LOTS		
	1	2-4	5-24	1	2-4	5-24	
 n ordering, give complete details—preferably by sketch or drawing. Long shafts subject to engineering approval. (a) No longer than standard	\$7.00 9.00 9.00 12.00 30.00	\$4.00 5.00 5.00 8.00 20.00	\$3.00 4.00 4.00 6.00 12.00	\$7.00 9.00 9.00 12.00 18.00	\$4.00 5.00 5.00 8.00 12.00	\$3.00 4.00 4.00 6.00 8.00	

6. SPECIAL SHAFT FEATURES

	For See "Clas	CLASS B Rating s" column motor LOTS	s Only price pages	For See "Class	r CLASS C Ratings Only ass" column motor price pages LOTS			
	1	2-4	5-24	1	2-4	5-24		
 Che following additions are to be added only in connection with the proper additions for special-length shaft. (a) Extension on both ends of motor—includes (e) (b) Free-machining stainless steel (c) Taper (d) Threads, per set	\$1.00	\$1.00	\$0.65	\$1.00	\$1.00	\$0.65		
	3.00	2.50	2.00	6.00	5.00	4.00		
	3.00	2.00	1.50	3.00	2.00	2.00		
	1.00	1.00	1.00	1.00	1.00	1.00		
(e) Extra rectangular keyway or flat	1.00	1.00	.65	1.00	1.00	.65		
	1.00	1.00	.65	1.00	1.00	.65		
	1.00	1.00	.65	1.00	1.00	.65		
	3.50	2.00	1.50	4.00	2.50	2.00		

7. BRAKES, MOTOR-MOUNTED-FRAMES 40, 60, AND 70

	Torque	A-c	D-c		-C AND D-C CE ADDITIONS				
Frame	Lb-ft Cont.	CR9522- Form		A-c D-c		- For vertical, hand-release, special enclosures, refer t Company.			
4 0 60 & 70	.75 3	A1H A2C	B1B F2H	\$29 33	\$31 35				

63

MODIFICATIONS AND ACCESSORIES

Integral-hp A-c Induction Motors and Gear-motors

1. GENERAL

All price additions for electrical modifications for integral-horsepower motors are cumulative, each addition being added to the motor price before the next addition is figured.

All price additions for mechanical modifications for integral-horsepower motors are additive, the total amount of all additions being added to the motor price.

Each price addition is figured separately to the nearest dollar. (Fifty cents and above becomes the next higher dollar.)

All price additions are based on the price of the open, horizontal, sleeve-bearing, 40 C continuous-rated motor of the same type and rating, except that, where motors are listed enclosed or with ball bearings only, the prices of such motors are used as the base. Additions for mechanical modifications are based on the price of the motor after all adjustments for electrical modifications, if any, have been made.

All price additions for modifications are subject to the same discount classification as the motors to which they apply.

For your convenience, electrical modifications are listed here alphabetically by electrical change desired.

Mechanical modifications are also listed first alphabetically by motor part and secondly alphabetically by type of accessory.

2. ELECTRICAL MODIFICATIONS

(a) Frequency or Voltage—Special

Standard frequencies are: 60, 50, 40, 30, and 25 cycles.

Standard voltages 110, 208, 220, 440, 550, and 2200 volts.

Add 5 per cent to motor price if special frequency or voltage is desired.

Caution: Add 5 per cent for 110 volts in Frames 364 and 365. Special prices prevail for 110-volt motors in larger frames.

(b) Overload

25 per cent for 2 hours at 55 C rise—add 5 per cent to price of 40 C continuous-rated motor of same type and rating.

(c) Quiet Operation

In most cases, the standard G-E motor is suitable for locations requiring quiet operation. Special motors can be made that have been designed and tested for quiet operation.

Quiet operation

Frames 505 and smaller—

Squirrel-cage......Add 15 per cent (minimum addition **\$10**) to price of standard motor of same type and rating

GENERAL 🍘 ELECTRIC

Wound-rotor.....Add 25 per cent (minimum addition **\$25**) to price of standard motor of same type and rating

Frames larger than 505..... Refer to Company, giving complete application details

(d) Rating

Nonstandard. Use next-larger standard-hp motor.

(e) Speed Changes

The Company has a complete line of multispeed motors available—2-speed, 3-speed, and 4-speed polyphase induction motors. Prices and information will be furnished immediately upon request.

(f) Temperature Ratings

Open motors

Totally Enclosed (Not Fan-cooled)*

60-cycle40 CAdd 5	per cent to price of next-larger listed, 55 C rise, totally enclosed (not fan-cooled) motor of same type, number of poles, and frequency.
50-cycle—55 CAdd 5	per cent to price of listed 60-cycle, 55 C rise, totally enclosed (not fan-cooled) motor of same type, hp, and number of poles.
50-cycle40 CAdd 5	per cent to price of next-larger listed 60-cycle, 55 C rise, totally enclosed (not fan-cooled) motor of same type and number of poles.

Totally Enclosed, Fan-cooled*

60-cycle40 CAdd	5 per cent to price of next-larger listed, 55 C rise, totally enclosed, fan-cooled motor of same type, number of poles, and frequency.
50-cycle—55 C	Use price of next-larger listed 60-cycle, 55 C rise, totally enclosed, fan-cooled motor of same type and number of poles.
50-cycle—40 CAdd	5 per cent to price of second-larger listed 60-cycle, 55 C rise, totally enclosed, fan-cooled motor of same type and number of poles.

(g) Time Ratings

 Intermittent ratings (constant-speed, open motors)
 Types K, KF, KG, and M

(h) Torque Changes

High-starting-torque Type KG Motors

Where not listed....Add to price of normal-starting-current motor (Type K) of same rating as follows: Frames 254 to 326, add 5%; Frames 364 to 405, add 7½%; Frames 444 and larger, add 15%.

* Classified as mechanical modification.

3. MECHANICAL MODIFICATIONS

(a) Bearings

Ball or roller-grease-lubricated.

Single-bearing motors....Add 2½ per cent (min **\$2**) Two-bearing motors....Add 5 per cent (min **\$4**)...

the percentage Base Base the percentage addition on price of motor with two sleeve bearings after adjust-ments for all required electrical modifications have been made. Make further adjustments for single, and three.bear. single- and three-bear-ing motors as listed under "sleeve" bearing m under ings.

(b) Conduit Box

Standard boxes can be located on either side of the motor by reversing the stator. Or they may be directed in any one of four positions. The correct conduit opening for the conduit generally used is furnished. Also, the correct type of box for the type of motor is furnished. Some modifications of these can be obtained on request.

(c) Connections

Differential protection, add 5 per cent.

Dual-voltage (i.e. 220/440), add 5 per cent in frames larger than 505.

Y-delta connection (i.e. 220/380), add 5 per cent, based on price of motor at higher voltage.

(d) Enclosures (See Definitions, page 140.)

Frames		$\frac{224}{225}$	254	284	$ ^{324}_{326}$	$\frac{364}{365}$		$\begin{array}{c} 444 \\ 445 \end{array}$	504 505
Splashproof, 50 C Protected Self-(pipe-)ventilated, 40 C Separately(forced)ventilated,	Add	5 er spl 40%	ashp	roof n	12 notor sleeve			33 notor	46 price
40 C		20%	to	open	sleeve	e-bear	ring r	notor	price

(e) Face and Flange End Shields—See page 31.

(f) Finish Special

Γ.

Paint furnished by G.E., \$4+2 per cent of motor price.

Paint furnished by purchaser, \$4 per motor.*

* When two or more identical motors are ordered for unit shipment, the basic **\$4** addition need be made but once.

(g) Insulation

Classification of Special or Extreme Conditions

- No. 1002. Steam, excessive moisture from vapor, splashing, dripping or flooding. (Parts of dye houses, bleacheries, packing plants, etc., involve this condition.)
- No. 1003. Excessive amounts of acid or alkali vapors, fumes, or dusts. (Chemical, fertilizer, and similar plants usually have this condition.)
- No. 1005. Excessive ambient temperature-where windings are subject to observable temperatures (ambient plus rise) above 90 C, but not exceeding 110 C for open motors, or above 95 C, but not exceeding 115 C for totally enclosed motors. (Class B.)
- No. 1006. Conducting or abrasive dusts, such as cast-iron dust, carbon, graphite, coke, etc. Even small amounts of such dusts may be extremely harmful.
- No. 1007. A combination of conducting or abrasive dusts (such as carbon, coke, coal, etc.), with sulphur fumes, moisture, etc., as is often encountered in power-plant boiler rooms around fans, and coal-pulverizing and ash-handling equipment.

Prices are available on request.

(h) Leads

Where leads longer than those furnished as standard are required, make the following additions per motor for each extra foot or fraction thereof of lead beyond standard.

No. of	15 hp and	20 to	60 to	125 to
Leads	Smaller	50 hp	100 hp	200 hp
4 or less	\$0.25	\$0.50	\$0.75	\$1.00
5 to 8	.50	1.00	1.50	2.00
9 to 14	.75	1.50	2.25	3.00

NOTE .--- Minimum charge is \$1 per motor.

		Price Additions	for Mechanical Modifi	cations '	
	Item 1	Item 2	Item 4		
Moto r Frame	End Thrust	Motor Feet		Purchaser's oupling	Round Frame
	(Horizontal Ball-bearing Motors)	Planed (Sides); Splined, or Slotted	Rigid	Flexible †	(Omission of Feet)
$203-204 \\ 224-225 \\ 254$	\$2 3 3	\$6 6 6	\$15 15 15	\$8 8 8	} No charge \$3
$\begin{array}{c} 284 \\ 324 - 326 \\ 364 - 365 \end{array}$	4 6 9	7 7 7	15 16 16	8 8 8	4 6 9
$\begin{array}{r} 404 - 405 \\ 444 - 445 \\ 504 - 505 \end{array}$	12 16 23	11 13 13	16 16 24	8 8 13	12 16 23
\$750 and below 751 to \$1000 1001 to 1500 1501 to 2500 2501 to 3500			24 24 24 32 32	13 13 13 16 16	5% 5% 5% 5%

(i) Mounting

* Additions apply also for pressing-on pinions. † Additions apply also for pressing-on V-belt sheaves.

(j) Operation

End Play—Horizontal sleeve-bearing motors, Frames 203-445, add 1 per cent for end play within limits of 0.005 to 0.010 in.

Dynamic Balancing-All G-E integral-hp induction motors are dynamically balanced to close limits as standard.

For dynamic balancing to extreme precision limits, add:

Frame 203-254 \$14 284-364..... 20 365-.445..... 26 504-505..... **32**

(k) Overspeed

0-25% overspeed—no addition 26-100% overspeed—add 10%

(1)Shafts

Where shaft extensions in excess of standard lengths (as shown on standard dimension prints) are used without outboard bearings or in any manner that would place abnormal stress on the bearings, refer to the Company.

Any deviation from standard shaft will increase the motor price according to the following price additions. For any modifications of shafts not listed, refer to the Company.

When pricing special shaft for brake, determine if straight or tapered shaft is required.

	0					Moto	or Frame							(for mot an 505 or	
, Modification of Shaft	Number of Motors *	203 204 N6212	224 225 6203 6204 N6213 N6214	254 6205 N6215	284 N6206 N6216	324 326 N6207 N6208 N6217 N6218	364 365 N6301 N6302	404 405 N6303 N6304	444 445 N6305 N6306	504 N6307	505 N6308	\$750 and Below	\$751 to \$1000	\$1001 to \$1500	\$150 to \$350
								Price A	dditions						
Special shaft with stand-															
ard metal	1	1												EE NOTE	
Standard length or †shorter	1 2 to 4 5 to 24 25 or,more	\$6 4 3 1	\$6 5 4 2	\$6 5 4 2	\$7 6 4 3	\$9 7 5 4	\$10 8 6 6	\$12 10 7 7	\$15 12 12 12 12	\$17 14 14 14	\$17 14 14 14	\$18 14 14 14	\$20 16 16 16	\$22 18 18 18	\$24 19 19 19
5 in. longer than standard	1 2 to 4 5 to 24 25 or more	8 5 4 2	8 6 5 3	8 6 5 3	8 7 5 4	10 8 6 5	11 9 7 7	14 12 9 9	17 14 14 14	19 16 16 16	19 16 16 16	21 17 17 17	23 19 19 19	26 22 22 22	29 24 24 24
10 in. longer than standard	1 2 to 4 5 to 24 25 or more	10 7 5 3	10 7 6 4	10 7 6 4	10 8 6 5	11 9 7 6	12 10 8 8	16 14 11 11	19 16 16 16	21 18 18 18	21 18 18 18	24 20 20 20	26 22 22 22	30 26 26 26	34 29 29 29
15 in. longer than standard	1 2 to 4 5 to 24 25 or more	15 10 6 4	15 10 7 5	15 10 7 5	15 10 7 6	15 10 8 7	16 11 9 9	18 16 13 13	21 18 18 18	23 20 20 20	23 20 20 20	27 23 23 23	29 25 25 25	34 30 30 30	39 34 34 34
Each additional 5 in. (or less) in excess of 15 in. longer than standard						2	2	2	2	3	3	3	3	4	5
Special shaft features					must he ired—SE			e price ad	lditions li	isted abo	ve for sp	ecial sha	aft of the	length a	nd
Double shaft extension.	l or more	\$1	\$1	\$1	\$1		special s							l larger) p lout furt	
Tapered shaft—one end (includes threads, nut and lock washer	1 2 to 4 5 to 24 25 or more	3 2 1.50 .50	3 2.50 2 1	3 2.50 2 1	3.50 3 2 1.50	\$4.50 3.50 2.50 2	\$5 4 3 3	\$6 5 3.50 3.50	\$7.50 6 6 6	\$8.50 7 7 7 7	\$8.50 7 7 7 7	\$9 7 7 7	\$10 8 8 8	\$11 9 9 9	\$12 9.50 9.50 9.50
Threads—per set Drilling and/or tap- ping—per holes Knurling—Each § Keyway—special (all types)—each	1 2 to 4 5 to 24 25 or more	1.20 .80 .60 .20	1.20 1 .80 .40	1.20 1 .80 .40	1.40 1.20 .80 .60	1.80 1.40 1 .80	2 1.60 1.20 1.20	2.40 2 1.40 1.40	3 2.40 2.40 2.40	3.40 2.80 2.80 2.80 2.80	3.40 2.80 2.80 2.80 2.80	3.60 2.80 2.80 2.80	4 3.20 3.20 3.20	4.40 3.60 3.60 3.60 3.60	4.80 3.80 3.80 3.80 3.80
Parkerizing, plat- ing, etc Splined shaft—one end	1 2 to 4 5 to 24 25 or more	6 4 3 1	6 5 4 2	6 5 4 2	7 6 4 3 for specie	9 7 5 4	10 8 6 6	12 10 7 7 7	15 12 12 12	17 14 14 14	17 14 14 14	18 14 14 14	20 16 16 16	22 18 18 18	24 19 19 19

* Motors are to be identical electrically and mechanically, for shipment on specified dates within a period of 90 days from date of first shipment.

[†] For motors in frames larger than 505, no charge is made for shafts shorter than standard.

‡ Maximum length of shaft beyond standard is 15 in. for Frames 284 and smaller, and 72 in, for Frames 324 and larger.

§ When addition is made for special shaft, one straight, rectangular keyway will be furnished for each shaft extension without further charge,

\$11.80 (Use \$12)

GENERAL B ELECTRIC

4. ACCESSORIES

(a) Bases and Pulleys

A complete line of sliding bases is available for General Electric motors. For motors built in standard mounting dimensions, each base bears the number of the frame size of the motor for which it is designed. The design of the bases shows the same forethought and knowledge of operating conditions which are evident in the construction of the motors themselves.

The following features of a G-E sliding base facilitate installation and provide unusually satisfactory operation.

- 1. The motor can be moved in either direction by a single adjusting screw.
- 2. Alignment of the motor and belt is maintained in all positions by guide washers, sliding in accurately machined grooves.
- 3. The four holding-down bolts are secured on the under side of the base so that they cannot turn or drop down; this permits the installation of the motor without lifting or tipping up the base.
- Accident hazards are avoided, since there are no 4. projecting bolts or studs on which to trip or catch the clothing.
- Ample strength is provided by heavy cast-iron 5. construction for floor, side-wall, or ceiling mounting.
- Neat appearance and uniformity of castings are 6. assured by the use of metal patterns.

AI	TERNATING-CURRENT			
Motor Frame	Price of Base	Price of Pulle		
203-204	\$6	\$2		
224-225	6	3		
254	6 8	3		
284	10	1 Ă		
324	13	5		
326	13	3 3 4 5 7		
364-365	15	9		
404-405	17	10		
444-445	20	13		
504	24	16		
505	24	24		
	500 Series" Motors			
542	\$30	\$30		
546	30	40		
552	40	40		
556	40	55		
558	55~	55		
564-566	75	115		
568	100	115		

A line of standard flat-face paper pulleys is also

Price Additions to Motor Only

Integral-horsepower Motors

ALTERNATING-CURRENT

available for G-E motors at the following prices:

(b) Brakes

Information covering a complete line of brake-motors is available on request.

- (c) Bearing Temperature Relays
- \$40 net for each sleeve bearing above 505 Frame. Oil Sight Gage (**d**)
- Add \$2 per bearing. (e) Plugging Switch, Motor-mounted Add \$15 to price of CR2962 for mounting on motor. (CR2962 price \$41-GO-10.)
- MODIFICATIONS

Integral-hp Direct-current Motors

ELECTRICAL MODIFICATIONS

Voltage

For the purpose of pricing, 115 and 230 volts are considered as standard within the following horsepower ranges:

Volts	115	230
Нр	30 (except 3500 rpm)	200 and smaller

For 115-volt motors above this range, and for 550-

or 600-volt motors, price additions must be made as

shown in the following table:

		TO RPM		1150 то) грм	АВОVЕ 1750 то 3600 RPM		
Hp	115 Volts	550 and 600 Volts	115 Volts	550 and 600 Volts	115 Volts	550 and 600 Volts	
Up to 20 21 to 30 31 to 50 51 to 60 61 to 125 126 to 200	$0\\0\\5\%\\10\%\\40\%$	$\left \begin{array}{c} *5\% \\ \dagger 15\% \\ \circ r \\ \ddagger 25\% \end{array}\right $	0 5% 10% 60%	$\left \begin{array}{c} *5\% \\ \dagger 15\% \\ \text{or} \\ \ddagger 25\% \end{array}\right $	0 50% 50%	* 5% †15% or ‡25%	

* 5% applies only to motors with speed range as listed on constant-speed-

5% applies only to motors with speed range as listed on constant-speed-motor price pages.
 † 15% applies to motors having a speed range of less than 3:1, but more than listed on constant-speed-motor price pages after proper adjustment is made for speed range.
 ‡ 25% applies for motors having a speed range of 3:1 to 4:1 inclusive as listed on adjustable-speed-motor price pages.
 § Refer to the Company.

For voltages of 100 to 172 inclusive, except 115 volts, add 5 per cent to the 115-volt-motor price.

For voltages of 173 to 390 inclusive, except 230 volts, add 5 per cent to the 230-volt motor price.

For voltages of 391 to 750 inclusive, except 550 and 600 volts, add 5 per cent to the 550-volt motor price.

GENERAL 🍪 ELECTRIC

GO-7

Constant-torque Motors

With constant-torque load, the horsepower output varies in direct proportion to the speed.

To price constant-torque motors having a speed range of less than 3:1, use price of constant-horsepower 40 C continuous-rated motor of same horsepower as required at maximum speed, and with the same speed range. Frame sizes may be different.

For constant-torque motors having a speed range of 3:1 or more, refer to the Company.

NOTE: Orders must specify motors are for constanttorque duty.

Pump Motors

Motors for driving centrifugal pumps should have speed characteristics which differ from those of standard general-purpose motors. If the speed of the motor is less than rated pump speed, the pump output is less than rated output. And if the motor speed is greater

than rated pump speed, the motor is liable to become dangerously overloaded. This is because the power required to drive a centrifugal pump varies directly as the cube of the speed. Therefore, a d-c motor applied to such a pump should have a speed, when hot, within ± 3 per cent of the rated pump speed.

These motors are priced the same as constanthorsepower or constant-torque motors. When ordering motors for centrifugal-pump drive, the application should be specified on the order so that the correct motor will be furnished.

Fan-duty Motors (Variable-torque)

These motors are priced the same as constanthorsepower or constant-torque motors. Frame sizes may be different.

NOTE: Order's must specify motors are for fan duty. **Quiet Operation**

Add 25 per cent; minimum charge, \$25.

MECHANICAL MODIFICATIONS

Bearings, Ball or Roller

Same as for polyphase induction motors.

Special Shafts

Where shaft extensions in excess of standard lengths (as shown on standard dimension prints) are used without outboard bearings or in any manner that would place abnormal stress on the bearings, refer to the Company.

Any deviation from standard shaft will increase the motor price according to the following price additions. For any modifications of shafts not listed, refer to the Company.

When pricing special shaft for brake, determine if straight or tapered shaft is required.

		Ŧ	Motor	r Frame			Motor Price (For motors in frames larger than 284)								
Modification of Shaft	Number of Motors *	203 2 0 4	$ \begin{array}{ c c c c } 224 \\ 225 \\ 226 \\ \end{array} $	254	284	\$261 to \$340	to	to	to	to	to	\$1251 to \$1500	to	to	to
								Price	Additio	ns					
Special shaft with standard metal [†]		Mal		er price NOTE	additic	ons for a	any iten	ns listed	l under	"special	l shaft f	eatures,	' if requ	uired	
Standard length or ‡shorter {	1 2 to 4	\$6 4	\$6 5	\$6 5	\$7 6	\$9 7	\$10 8	\$12 10	\$15 12	\$17 14	\$17 14	\$18 14	\$20 16	\$22 18	\$24 19
5 in, longer than standard $\dots $	1 2 to 4	8 5	8	8 6	8 7	10 8	11 9	14 12	17 14	19 16	19 16	21 17	23 19	26 22	29 24
10 in. longer than standard $\ldots $	1 2 to 4	10 7	10 7	10 7	10 8	11 9	12 10	16 14	19 16	21 18	21 18	24 20	26 22	30 26	34 29
15 in. longer than standard {	1 2 to 4	15 10	15 10	15 10	15 10	· 15 10	16 11	18 16	21 18	23 20	23 20	27 23	29 25	34 30	39 34
§Each additional 5 in. (or less) in excess of 15 in.longer than standard	1 or more					2	2	2	2	3	3	3	3	4	5
Special shaft features				lditions pe of m					ce addit	ions list	ed abov	e for spe	cial shaf	t of the	
Double shaft-extension	1 or more	\$1.00	\$1.00	\$1.00	\$1.00	284	price a Frame) notor wi	permit	specials	haftexte	fts liste ensi <mark>on</mark> o	d above n either	(larger) or both	than ends	
Tapered shaft—one end (includes { threads, nut, and lockwasher) {	$\begin{smallmatrix}1\\2\text{ to }4\end{smallmatrix}$	3.00 2.00	3.00 2.50	3.00 2.50	3.50 3.00	\$4.50 3.50		\$6.00			\$8.50 7.00	\$9.00 7.00	\$10.00 8.00		\$12.00 9.50
Threads—per set Drilling and/or tapping—per hole Knurling—each ¶ Keyway—special (all types each	1 2 to 4	1.20 .80	1.20 1.00	1.20 1.00	1.40 1.20	1.80 1.40	2.00 1.60	2.40 2.00	3.00 2.40	3.40 2.80	3.40 2.80	3.60 2.80	4.00 3.20	4.40 3.60	4.80 3.80
Parkerizing, plating, etc Splined shaft—one end	$\begin{array}{c}1\\2\text{ to }4\end{array}$	6.00 4.00	6.00 ·5.00	6.00 5.00	7.00 6.00	9.00 7.00	10.00 8.00	12.00 10.00	15.00 12.00	17.00 14.00	17.00 14.00	18.00 14.00	20.00 16.00	22.00 18.00	24.00 19.00
Omitting keyway from standard shaft		Make	price ad	ldition f	or spec	ial shaf	t of star	ndard le	ength.						

Motors are to be identical electrically and mechanically, for shipment on specified date within a period of 90 days from date of first shipment.
For shafts of special metals, refer to the Company.
For motors in frames larger than 284, no charge is made for shafts shorter than standard.
Maximum length of shaft beyond standard is 15 in. for Frames 284 and smaller, and 72 in. for frames larger than 284.
When addition is made for special shaft, one straight, rectangular keyway will be furnished for each shaft-extension without further charge.

NOTE—The price additions for special shafts and any required special shaft features should be combined and their total figured to the nearest dollar for each motor (50 cents becoming the next-higher dollar).

BEXAMPLE.—Price addition for a 284 Frame motor with 4-in. straight shaft-extension and Woodruff keyway on each end is \$12, figure as follows: Standard shaft-extension is 3½ in. Extra length is 4½ in. Special shaft (standard metal) 4½ in. longer than standard.
Standart extension.
<li

\$11.80 (Use \$12)

	Item 1	Iter	m 2	Item 3	Item 5	Iter	n 6 .	Item 7
		INSUL	ATION				SING ON ASERS	-
Motor Price (After Adjusting			on 1005 ss B)	*Machining Motor	Discil	PURCH	Flexible	Round
for All Required Electrical Modifications)	Compound Windings	Armature and Fields	Armature Only	- Field Frame (Includes Omission of Feet)	Planed Feet (Sides)	Rigid Half- coupling or Pinion ¶ Sprocket, or V-belt Sheave A		Frame (Omission of Feet)
\$109 and below 110 to \$157 158 to 242	\$2 <u>4</u> 6	\$61 73 85	\$30 36 42	\$10 12 15	\$6 7 8	\$15 15 15	\$8 8 8	† †\$5 7
243 to 424 425 to 575 576 to 1029	10 16 30	151 188 224	48 67 91	21 	11 13 16	15 16 16	8 8 8	10 14 20
1030 to 1815 1816 to 2662 2663 and above	39 67 3%	260 363 18%	109 182 9%		18 21 24	24 32 §	13 16	30 45 2%

Price Additions for Mechanical Modifications

=

* Applies only to motors in Frames 203 to 284 inclusive. Field-frame dimension "P" may be reduced not more than ½ in.
† No charge for round frame for Frames 203, 204, 224, and 225.
‡ Price additions do not include transportation.
§ Up to 0.4 hp per rpm \$32, over 0.4 to 1 hp per rpm \$50; over 1 to 2.5 hp per rpm \$65.
Up to 0.4 hp per rpm \$16; over 0.4 to 1 hp per rpm \$25; over 1 to 2.5 hp per rpm \$33.
¶To be shipped to our Works rough-bored. We will finish-bore and keyseat.
△To be shipped to our Works finish-bore and keyseated to our dimensions. If we are to finish-bore and keyseat, the same price additions as listed for rigid half-couplings will apply.

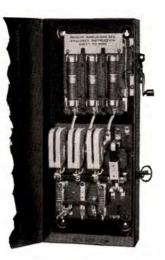
Price Additions (or Deductions, Where Indicated) for Mechanical Modifications

	Item 8	14	Item 9		Iter	m 10	Item 11	Item 12	Item 13	
Motor Price (After		VERTIC	AL SOLID-SHAFT	MOTORS		D SHIELD				
Adjusting for All Required	Belt- tightener	With Base	Ded for Omis			SPLIT BEARING	Water- tight Conduit	End- thrust, Horizontal	Special Finish, Filled	
Electrical Modifications)	Attachment	and Drip Cover †	Drip Cover	Base	Front End	Rear End	Box *	Ball- bearing Motors	and Rubbed	
\$109 and below 110 to \$157 158 to 242	 \$52	\$24 31 42	\$5 8 13	\$8 8 11	\$18	\$12	\$4 5 6	\$3 4 5	\$5 7 10	
243 to 424 425 to 575 576 to 1029	63 79 97	67 97 151	13 25 36	11 15 19	28 36 5 4	18 24 36	8 10 14	6 12 23	12 25 32	
030 to 1815 816 to 2662 663 and above		242 15% 15%	47 59 3%	27 42 3 %	73 109 No add'n		19 23 1%		42 52 2 %	

* Navy-type bushing can be furnished at same price.
 † Price additions are made to price of sleeve-bearing motor.

Price Additions for Mechanical Modifications*†

Motor Frame	NEMA Standard Style B End	FACE-TYPE E	ND SHIELD, WITH M	AND FINISHING	SPECIAL MACHINING OF STANDARD END SHIELD				
or Price	Shield with Machining and		Number	of Motors		\$Number of Motors			
1. A.	Finishing	1	2-4	5–24	25 or More	1	2 to 4		
203, 204	\$5	\$ <u>4</u>	\$4	\$3	\$3	\$2	\$2		
224, 225, 226	7	5	5	<u>4</u>	<u>4</u>	3	2		
254	9	7	6	5	5	3	2		
$284 \\ 261-340 \\ 3341-424$	11	8	7	6	6	3	2		
	14	12	10	8	8	5	4		
	18	15	12	10	10	6	5		
\$425–575	24	18	14	14	14	*7	6		
\$576–750	36	22	18	18	18	9	7		
\$751–1250	46	30	25	25	25	11	8		


* Price additions should be made to price of ball-bearing motor. † If motor without feet is required, make regular addition for "round frame" (Item 7 above). * Motors must be identical electrically and mechanically, and the Company must be permitted to complete shipment within 90 days following the initial shipment,

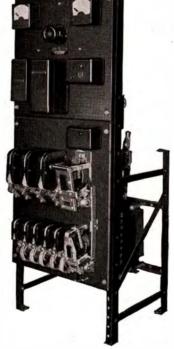
PICTORIAL SELECTOR MAGNETIC CONTROLS

CR7006 magnetic full-voltage starter

This full-voltage starter consists of a 3-pole magnetic contactor and two temperature overload relays cased in a metal enclosure. May be operated from a push button mounted in the cover of the case or from a remotely located push button. Available in a number of ratings, to satisfy any requirement.

CR7008 magnetic full-voltage combination starter

CR7009 magnetic fullvoltage reversing starter


In this starter, two mechanically interlocked contactors are combined. Operated by a 3-button push button, or other equivalent pilot control, it provides "Forward-Reverse-Stop" control for a motor. It also affords overload and undervoltage protection.

This starter combines a CR7006 with an externally operated manual fusible or nonfusible safety switch or circuit breaker. For safety to operators, enclosing cover locks closed when safety switch is closed.

CR7051 magnetic reducedvoltage starter

This reduced-voltage starter controls a motor from push-button stations or pilot controls—automatically, after a definite time applies full voltage to motor when it approaches full speed. Provides overload and undervoltage protection.

CR7061 and CR7065 synchronousmotor starters

Control for all types of synchronous motors—semimagnetic or full-magnetic, and full- or reduced-volttage starting. Field application and removal always accomplished automatically. Complete overload protection by suitable relays during starting and running periods.

CR4065 magnetic starters for d-c motors

Magnetic starters for d-c motors are available in a variety of forms for constant- or adjustable-speed motors. Such features as reversing dynamic braking and jogging are provided, where they are required by the application. Complete protection is afforded to the motor and machine by temperature overload relays.

GENERAL 🎲 ELECTRIC

FOR MOTOR CONTROLS MANUAL CONTROLS

CR1061 manual full-voltage starter

CR1062 manual full-voltage starter

This compact, handoperated starting switch for fractional-hp motors is available in generalpurpose, dust-tight and hazardous-gas or -dust enclosures. A flip of the handle starts or stops the motor, provides overload protection. The handle is trip free, that is, it cannot be held in the closed position to prevent the switch opening on overload. Rating: 1 hp, 110 or 220 volts, a-c.

This starter is similar to the CR1061 switch, but is for use with 3phase motors up to 5 hp, 220 volts; 7½ hp, 600 volts. Available in general-purpose, dusttight and hazardous-gas or -dust enclosures. Two overload relays provide complete protection to the motor and driven machine.

CR1034 manual reduced-voltage starter (autotransformer type)

This starter is operated by a handle on the side push to start motor, then pull back to operating position. To stop, push the "Stop" button in front cover. Temperature relays protect motor against overload; undervoltage protection is also provided.

CR2927 pressure switch

CR2927 pressure switch for maintaining a predetermined pressure in any enclosing tank. Can be used to control small motors directly or as a pilot device for any nonreversing magnetic starter. See Publication GEA-821 for further data.

GENERAL ELECTRIC

CR2943 push-button station

CR2943-A200A two-button push-button station for use with nonreversing magnetic starters. Buttons marked "Start-Stop." Heavy-duty stations with two buttons are available. Similar to CR2940 station illustrated. Publications GEA-2473 and GEA-3469 give further details.

PILOT CONTROLS

CR2940 push-button station

CR2940-3A1 heavy-duty three-button push-button station for use with reversing magnetic starters. General-purpose station similar to above illustration at the left, but with three buttons. Large, accessible buttons clearly marked "Forward-Reverse-Stop." CR2931 float switch

CR2931 Form P float switch maintains level of liquid in an open tank or reservoir or in a sump tank. Can be used to control small motors directly, or as a pilot device for any nonreversing magnetic starter. See Publication GEA-67 for further details. 71

MOTOR CONTROL

Manual Control for Fractional-horsepower Motors

Single-pole; 1 hp, 110 to 220 Volts A-c = Maximum Ratings = D-c Double-pole; 1 hp, 110 to 220 Volts J **Thermal Overload Protection**

No. of Poles	Nomenclature	Cat. No.	* Price	Approx Ship. Wt in Lb
	OPEN TYPE	liso for Flush Mount	ing	
1 2	CR1061-C1C CR1061-C2C	4983952 4983960	\$1.85 2.10	1 1
$\frac{1}{2}$	CR1061-C1G CR1061-C2G	4983956 4983964	1.85 2.10	1
	ENCLOSED TYPE-	-For Surface Wall M	lounting	
1 2	CR1061-C1A CR1061-C2A	4983950 4983958	\$2.25 2.50	22
$\frac{1}{2}$	CR1061-C1E CR1061-C2E	4983954 4983962	2.25 2.50	22
	DUST-TIGHT ANI	WEATHER-RESIS	STING	
1 2	CR1061-F1A CR1061-F1B	4988807A 4988807B	\$8.10 8.35	10 10
$\frac{1}{2}$	CR1061-F1C CR1061-F1D	4988807C 4988807D	8.10 8.35	10 10
XPLOSION	I-PROOF TYPE—Fo	r Class I, Group D, I	Hazardous Locati	ons
$\frac{1}{2}$	CR1061-B2A CR1061-B2B	4986903G1 4986903G2	\$8.10 8.35	11 11
$\frac{1}{2}$	CR1061-B2C CR1061-B2D	4986903G3 4986903G4	8.10 8.35	11 11
	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	OPEN TYPE—†4 1 CR1061-C1C 2 CR1061-C2C 1 CR1061-C1G 2 CR1061-C1G 2 CR1061-C2G ENCLOSED TYPE - 1 CR1061-C1A 2 CR1061-C1A 1 CR1061-C1E 2 CR1061-C2E DUST-TIGHT ANI 1 CR1061-F1A 2 CR1061-F1A 1 CR1061-F1A 2 CR1061-F1D XPLOSION-PROOF TYPE—Fo 1 CR1061-B2A 2 CR1061-B2B 1 CR1061-B2C	OPEN TYPE—†Also for Flush Mount 1 CR1061-C1C 4983952 2 CR1061-C2C 4983960 1 CR1061-C1G 4983956 2 CR1061-C1G 4983956 2 CR1061-C2G 4983956 2 CR1061-C1A 4983956 2 CR1061-C1A 4983958 1 CR1061-C1E 4983954 2 CR1061-C1E 4983954 2 CR1061-C1E 4983954 2 CR1061-C1E 4983954 2 CR1061-F1A 4988807A 2 CR1061-F1A 4988807B 1 CR1061-F1C 4988807D 2 CR1061-F1D 4988807D 3 CR1061-F1D 4986903G1 1 CR1061-B2A 4986903G1 2 CR1061-B2B 4986903G2 1 CR1061-B2A 4986903G2	OPEN TYPE—†Also for Flush Mounting 1 CR1061-C1C 4983952 \$1.85 2 CR1061-C2C 4983960 2.10 1 CR1061-C1G 4983956 1.85 2 CR1061-C1G 4983956 1.85 2 CR1061-C2G 4983964 2.10 ENCLOSED TYPE—For Surface Wall Mounting 1 CR1061-C1A 4983958 2.50 1 CR1061-C1E 4983954 2.25 2 CR1061-C1E 4983954 2.50 1 CR1061-C1E 4983954 2.50 DUST-TIGHT AND WEATHER-RESISTING 1 CR1061-F1A 4988807A \$8.10 2 CR1061-F1B 4988807D 8.35 1 CR1061-F1D 4988807D 8.35 1 CR1061-F1C 4988807D 8.35 1 2 CR1061-F1D 4988807D 8.35 1 CR1061-F1D 4988807D 8.35 1 2 CR1061-B2A 4986903G1 \$8.10 2<

* Prices include one overload-device heater which must be ordered separately. Heater may be omitted or additional heaters may be ordered, at **\$0.50** each. † Open type is adaptable to flush mounting when used with standard (2½-in.-deep) conduit box and flush plate. Replaceable solder-film-type overload device, Cat. No. 5187946G1. Price **\$0.50** each.

Single-pole; 1/2 hp, 115 to 230 Volts

J Double-pole; ¾ hp, 115 to 230 Volts Listed by Underwriters' Laboratories

ORDERING DIRECTIONS

Flush-mounted Type

- Order an open-type switch 1. by nomenclature designation and Cat. No.
- 2. For a single switch, order from a local dealer the material indicated below.
 - 1-Flush plate: Textolite, Cat. No. GE2316, or brass, Cat. No. GE1701.
 - 1—Conduit box, 2½ in. deep, Cat. No. SP6971 for rigid conduit.

Cat. No. SP6972 for "BX" or flexible conduit. For gang mounting, specify flush plate and/or conduit box "similar to Cat. No....," and state number of switches to be included in gang.

All Other Types

- Order switch by nomencla-1. ture designation and Cat. No.
- 2. Order one heater for overload device.

Enclosed-type Control for Squirrel-cage and Wound-rotor Induction Motors 3- and 2-phase, ¶ 3-wire-60 and 50 Cycles

		For	Squirrel- Co:	cage Ind nstant-sp	uction M beed	lotors,		l with Eith age or Wo				For Wou onstant-				
	1		MANUAL		MAGNETIC		Motors @			MANUAL				MAGNETIC		
Нр	Volts	Full- volt- age Start- ing	Re- duced- volt- age Starter (auto- trans-	Pri- mary- resis- tor Starter	Re- duced- volt- age Starter (auto- trans- former type)	Pri- mary- resis- tor Starter	Mag- netic Full- volt- age Starter or Pri-	COMBINA MAGNE FULL-VO STARTE PRIMA SWITC CR70 (3-PO)	ETIC LTAGE R OR RY CH 008	Mag- netic Rever- sing Full- volt- age	Start- ing Rheo- stat	Speed- regu- lating Rheo- stat © CR1263 for	Drum Switch and Cast- grid Resis- tor	Drum Switch and Cast- grid Resis- tor	Non- revers- ing Con-	Revers ing Con- troller
		Switch CR1062 (3-pole)	former type) CR1034	CR1042	⊕ Push- button In- cluded CR7051	С с т ф	mary Switch CR7006 (3-pole)	α Fusible (Fuse- clip amp shown in italics)	Non- fusible		© CR1028	Ma- chine Serv- ice CR1264 for Fan Serv- ice		for Speed- regu- lating Duty CR3204	troller CR7022	CR7029
		<u> </u>				,	(* F									
								PRICES	5							
¼ to 1½	$\left.\begin{array}{c}110,220\\440,550\end{array}\right\}$	\$7.50			[*\$14 14	*\$28 (30) 31 (30)	*\$25 25	\$\$30 30	\$33 33	\$46 46		····		
2	$110 \\ 220 \\ 440, 550$	9.50 7.50 7.50	· · · · · · · · · · · · · · · · · · ·	····	· · · · ·	*\$128 *128	*16 *14 *14	*30 (30) *28 (30) *31 (30)	*27 *25 *25	135 130 130	33 33 33	53 53 53	· · · · ·	 	 	
8	$110 \\ 220 \\ 440, 550$	9.50 9.50 9.50	· · · · ·		••••	*128 *128	*16 *16 *16	*30 (30) *30 (31) *33 (30)	*27 *27 *27	135 135 135	33 33 33	53 53 53				····
5	$110 \\ 220 \\ 440, 550$	9.50 9.50	\$101 101	\$63 63	\$171 171	*128 *128	*30 *16 *16	51 (60) *30 (30) *33 (30)	46 *27 *27	167 135 135	36 36 36	74 74 74	\$110 110 110	\$121 121 121	*\$139 *139	1\$198 198

For footnotes, see following page

Enclosed-type Control for Squirrel-cage and Wound-rotor Induction Motors

3- and 2-phase, ¶3-wire-60 and 50 Cycles

		For S		cage Indu nstant-sp		otors,	Use	d with Eitl age or Wo	her Squ	irrel-			-rotor In Adjusta			
			MANUAL		MAG	NETIC		Motor	rs 🖲	101			MANUAL		MAG	NETIC
Нр	Volts	Full- volt- age Start- ing Switch Switch Full- duced- volt- age Starter (auto- trans- former type)		duced- volt- age mary- Starter resis- (auto- trans- former type)		tor Starter	Mag- netic Full- volt- age Starter or Pri- mary Switch	Combination magnetic full-voltage starter or primary switch CR7008 (3-pole)		Mag- netic Revers- ing Full- volt- age Starter or Pri- mary Switch	Start- ing Rheo- stat	Speed- regu- lating Rheo- stat CR1263 for Ma- chine Serv- ice	Drum Switch and Cast- grid Resis- tor for Start- ing Duty	Drum Switch and Cast- grid Resis- tor for Speed- regu- lating	Non- revers- ing Con- troller	Revers- ing Con- troller
		CR1062 (3-pole)	CR1034	CR1042	In- cluded CR7051	СR7056 ф	CR7006 (3-pole)	□ α Fusible (Fuse- clip amp shown in italics)	Non- fusible		© CR1028	CR1264 for Fan	CR3204	Duty	CR7022	CR7029
		100						PRIC								
71/2	$ \begin{array}{r} 110 \\ 220 \\ 440, 550 \end{array} $	\$9.50	\$101 101	\$63 63	\$171 171	*\$128 *128	*\$30 *30 *16	\$51 (60) *51 (30) *33 (60)	\$46 *46 *27	‡\$67 ‡67 ‡35	\$63 63	\$87 87 87	\$112 112 112	\$124 124 124	*\$139 *189	‡\$198 ‡198
10	$110 \\ 220 \\ 440, 550$		 101 101	φ71 φ71	171 171	*134 *134	*50 *30 *30	80 (100) *51 (60) *53 (60)	77 *46 *46	105 §67 \$67	63 63	95 95 95	112 112 112	124 124 124	*139 *139 *139	1198 1198
15	$110 \\ 220 \\ 440, 550$	····· ·····		φ 71 φ 71	171 171	*139 *189	*50 *30 *30	*51 (60) *53 (60)	*46 *46	‡105 ‡67 ‡67	90 90 90	116 116 116	119 119 119	155 155 155	*139 *139 *139	‡198 ‡198
20	$110 \\ 220 \\ 440, 550$	····	105 105	····· ····	200 187	*181 *151	*112 *50 *30	*80(100) *53(60)	*77 *46	‡263 ‡105 ‡67	90 90	132 132 132	149 149 149	184 184 184	*261 *261	‡355 ‡320
25	220 440, 550 2200	····	105 105 △417		200 187 △806	*187 *157	*50 *30 † ∆389	*80 (100) *53 (60)	*77 *46	‡105 ‡67 § △693		160 160 160	150 150 150	214 214 214	*261 *261 † ∆737	1355 1320
30	$\begin{array}{r} 220 \\ 440 \\ 550 \\ 2200 \end{array}$	···· ····	109 109 109 △417		207 207 207 △806	*193 *193	*50 *50 *50 †∆389	*89 (200) *83 (100) *83 (100)	*77 *77 *77	105 105 105 § △693	· · · · · · · · · · · · ·		151 151 151 151 151	228 228 228 228 228	*261 *261 *261 † ∆737	1355 355 355 355
40	220 440, 550 2200	· · · · · · · · · · · · · · · · · · ·	185 115 △422	····	. 423 224 △813	421 *204	*112 *50 †∆389	*200 (400) *83 (100)	*161 *77 	‡263 ‡105 § ∆693	::::	••••• ••••	162 162 162	243 243 243	*489 *296 † ∆763	‡634 ‡380
50	220 440, 550 2200	····	191 115 △422	· · · · ·	423 224 △813	421 *222 	*112 *50 †∆389	*200 (100) *83 (100)	*161 φ*77	‡263 ‡105 § ∆693			167 167 167	274 274 274	*489 *286 † ∆763	‡634 ‡380
60	$ 220 \\ 440 \\ 550 $		198 198 198	: 	649 429 429	*	†226 *112 *112	 		§483 ‡263 ‡263	· · · · · · · · · · · · · · · · · · ·		170 170 170	304 304 304	+541 *509 *509	§772 1654 1654
	2200 4000	::::	∆437 ∆1029	·	∆827 ∆1608	::::	† ∆389 † ∆522			§ ∆693 § ∆952	::::		170 170	304 <mark>30</mark> 4	† ∆763 	::::
75	$220 \\ 440 \\ 550$	····	205 205 205	· · · · ·	649 429 429		†226 *112 *112		····· ····	§483 1263 1263	····		172 172 172	363 363 363	†541 *509 *509	§772 ‡654 ‡654
	2200 4000	····	∆437 ∆1029		∆827 ∆1608		† ∆389 † ∆522			§ ∆693 § ∆952	····		172 172	363 363	† ∆763 	::::
100	220 440 550	····	279 205 205	····	713 429 429	····	†226 *112 *112	····· ····		§483 ‡263 ‡263	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	189 189 189	424 424 424	+662 *577 *577	§893 ‡722 ‡722
	2200 4000 CR 2943-A 200A		∆ 445 ∆1085		∆834 ∆1664	•••• ••••	† ∆389 † ∆522		::::	§ ∆693 § ∆952		·	189 189	424 424	† ∆839	

Add CR2943-A200A push-button station at \$2.
 * Add CR2943-A200A push-button station at \$6.
 * Add CR2940-2A1 push-button station at \$6.
 * Add CR2940-2A1 push-button station at \$6.
 * Add CR2940-2A1 push-button station at \$6.
 * Add CR2940-3A1 push-button station at \$6.
 * Add CR2940-2A1 at \$6.
 * Or secondary control only. Requires separate primary switch, but no push-button stations included in prices can be omitted as follows:
 * OP ush-button stations included in prices can be omitted as follows:
 * OP ush-button stations included in prices can be omitted as follows:
 * OP ush-button stations included in prices can be omitted as follows:
 * OP ush-button stations included in prices can be omitted as follows:
 * OP ush-button statins prices (2940-2A1 at \$6.
 * CR1042, CR7029, CR70

Enclosed-type Control for Single-phase Induction Motors

60 and 50 Cycles

Type of Co	ntrol		MANUAL			MAGN	ETIC	
Гур <mark>е</mark> of Mo	otor	SCR	SCR, SCA, BSR, KC, or KCJ	SCA	SCR, SCA, BSR, KC, or KCJ	SCR, SCA, F	BSR, KC, or CJ	SCA
Hp	Volts	Reduced- voltage Starting Rheostat, CR1026	Full-voltage Starting Switch, CR1062 ¶2-pole	Full-voltage Rotating-cam Switch for Reversing Service,	Full-voltage Starting Switch, CR7006 ¶2-pole	COMBINATION F STARTING CR7 (3-pc (Fuse-clip amp)	SWITCH, 008	Full-voltage Reversing Switch, CR7009 (3-pole)
	L2	CK1020	2-pole	CR3300		shown in italics)		
1⁄2	$\begin{array}{c}115\\230\\460\end{array}$	\$22 22	\$6.50 6.50 6.50	\$12 12 22	* \$12 * 12 * 12	\$28 (30) * 28 (30) * 31 (30)	\$25 * 25 * 25	† \$30 † 30 † 30
3/4	$\begin{array}{c}115\\230\\460\end{array}$	22 22	6.50 6.50 6.50	12 12 22	* 12 * 12 * 12	28 (30) * 28 (30) * 31 (30)	25 * 25 * 25	† 30 † 30 † 30 † 30
1	$\begin{array}{c}115\\230\\460\end{array}$	22 22	6.50 6.50 6.50	12 12 22	* 12 * 12 * 12	28 (30) * 28 (30) * 31 (37)	25 * 25 * 25	† 30 † 30 † 30
11/2	$ \begin{array}{c} 115 \\ 230 \\ 460 \end{array} $	24 24	8.50 6.50 6.50	22 12 22	* 14 * 12 * 12	30 (30) * 28 (30) * 31 (30)	27 * 25 * 25	+ 35 + 30 + 30
2	$ \begin{array}{r} 115 \\ 230 \\ 460 \end{array} $	24 24	8.50 8.50	22 22	$\phi * 18 \\ * 14 \\ * 14$	51 (60) * 30 (30) * 33 (30)	46 * 27 * 27	† 67 † 35 † 35
3	$ \begin{array}{r} 115 \\ 230 \\ 460 \end{array} $	24 24	§ 8.50 8.50	22 22	φ * 18 * 14 * 14	51 (60) * 30 (30) * 33 (30)	46 * 27 * 27	† 67 † 35 † 35
5	$115 \\ 230 \\ 460$	26 26	8.50	22	$ \overset{\wedge}{ \phi} * 50 \\ \phi * 18 \\ * 14 $	80 (100) * 51 (30) * 38 (30)	77 * 46 * 27	105 † 67 † 35
71/2	$\begin{array}{c}115\\230\\460\end{array}$	49 36 38			$ \begin{array}{c} \triangle * 50 \\ \triangle * 30 \\ \phi * 18 \end{array} $	80 (100) * 51 (60) * 53 (60)	77 * 46 * 46	105 † 67 † 67
10	$\begin{array}{c}115\\230\\460\end{array}$	50 53 38			△ * 50 △ * 30	* 80 (100) * 53 (60)	77 * 46	105 † 67
15	$\begin{array}{c}115\\230\\460\end{array}$	62 56			△ * 50 △ * 50	80 (100) 83 (100)	77 77	···

Type of Control	SCR, Open Motors	SCR, Enclosed Motors	SCA, Open Motors
CR1062	% hp, 900 rpm, 115 or 230 volts 1 hp, 1800 rpm, 115 volts	14 hp, 900 rpm, 115 or 230 volts 14 hp, 1200 rpm, 115 or 230 volts 14 hp, 1800 rpm, 115 or 230 volts 1 hp, 1200 rpm, 115 or 230 volts 2 hp, 1200 rpm, 230 volts	¾ hp, 1200 rpm, 115 or 230 volts
CR7006 {	115 or 230 volts 115 or 230 volts	¹ / ₂ hp, 900 rpm, 115 volts 1 hp, 1800 rpm, 115 volts 1 hp, 1200 rpm, 230 volts	 4 hp, 1200 rpm, 115 volts 4 hp, 900 rpm, 115 volts 2 hp, 1800 rpm, 115 volts
CR7009			 4 hp, 1200 rpm, 115 volts 4 hp, 900 rpm, 115 volts 2 hp, 1800 rpm, 115 volts

Add CR2943-A200A push-button station at \$2.
Add CR2943-A300A push-button station at \$6.
Prices do not include fuses.
Except for 900-rpm, SCR and SCA open motors.
Price includes one overload-relay heater unit.
AThese are 3-pole switches and prices include two overload-relay heater units.
I motor normal full-load amp exceed 30. use price of \$30.
These prices apply only for starters with fuse clips of size indicated. Starters with larger fuse clips are available at a higher price. Select fuses in accordance with the National Electrical Code.

GENERAL 🎲 ELECTRIC

Synchronous-motor Controllers

60 or 50 Cycles, 3- or 2-phase, 3-wire Interrupting Rating, 10 Times Motor Full-load Current OPEN—FLOOR-MOUNTED

Undervoltage Protection (Time-delay above 600 volts) Overload Protection for Stator and Squirrel-cage Windings

Automatic Field Application
Pull-out Protection (Automatic
disconnection of motor from
line or automatic removal of
field)

R	lating of Co	ontroller		Reduced-voltage Controllers Full-voltage Controllers				Full-voltage Controllers						
HORSE	POWER			magnetic CR7061	,	SE	MIMAGNET CR7062	п с,		magnetic CR7065		SE	CR7066	1 C,
1.0- p-f	0.8- p-f	Voltage Rang e	* Price	Approx Ship. Wt in Lb	Panel No.	* Price	Approx Ship. Wt in Lb	Panel No.	* Price	Approx Ship. Wt in Lb	Panel No.	* Price	Approx Ship. Wt in Lb	Panel No.
25	20	220 440/550 2000/2500	\$620 572 1361	670 670 1800	$ \begin{array}{r} 111 \\ 111 \\ 211 \end{array} $	\$520 520 817	$550 \\ 550 \\ 1600$	$121 \\ 121 \\ 221$	\$445 425 784	370 370 1200	131 131 231	 \$804	 900	533
30	25	$\begin{array}{r} 220 \\ 440/550 \\ 2000/2500 \end{array}$	620 572 1361	670 670 1800	$111 \\ 111 \\ 211$	520 520 832	$550 \\ 550 \\ 1300$	$121 \\ 121 \\ 221$	445 425 784	370 370 1200	$131 \\ 131 \\ 231$	805	 900	· · · · · 533
40	30	$\begin{array}{r} 220 \\ 440/550 \\ 2000/2500 \end{array}$	633 633 1379	$750 \\ 670 \\ 1800$	$112 \\ 111 \\ 211$	524 524 832	$550 \\ 550 \\ 1600$	123 121 221	445 445 784	420 370 1200	$132 \\ 131 \\ 231$	 805	 900	533
50	40	$\begin{array}{r} 220 \\ 440/550 \\ 2000/2500 \end{array}$	775 642 1389	850 750 1800	$112 \\ 111 \\ 211$	600 530 837	$750 \\ 550 \\ 1600$	123 121 221	495 445 784	430 370 1200	$132 \\ 131 \\ 231$	 805	 900	533
60	50	$\begin{array}{r} 220 \\ 440/550 \\ 2000/2500 \end{array}$	775 662 1389	850 750 1800	$\begin{array}{c}112\\111\\221\end{array}$	606 530 837	750 550 1600	$123 \\ 121 \\ 221$	495 445 784	$ \begin{array}{r} 430 \\ 370 \\ 1200 \end{array} $	$132 \\ 131 \\ 231$	805	 900	533
75	60	$\begin{array}{r} 220\\ 440/550\\ 2000/2500\\ 2501/4500\end{array}$	911 784 1409 1902	$950 \\ 850 \\ 1800 \\ 2800$	$114 \\ 112 \\ 211 \\ 233$	613 613 852 1323	$750 \\ 750 \\ 1600 \\ 2450$	$123 \\ 123 \\ 221 \\ \dots$	605 495 784 1012	$\begin{array}{r} 625 \\ 430 \\ 1200 \\ 1200 \end{array}$	$134 \\ 132 \\ 231 \\ 433$	805 833	900 900	533 533
100	75	$\begin{array}{r} 220\\ 440/550\\ 2000/2500\\ 2501/4500\end{array}$	911 784 1409 1902	$950 \\ 900 \\ 1800 \\ 2800$	$114 \\ 112 \\ 211 \\ 233$	620 620 852 1323	$850 \\ 750 \\ 1600 \\ 2450$	124 123 221	605 495 784 1012	$\begin{array}{r} 625 \\ 430 \\ 1200 \\ 1200 \end{array}$	$134 \\ 132 \\ 231 \\ 433$	 805 833	···· 900 900	533 533
125	100	$\begin{array}{r} 220\\ 440/550\\ 2000/2500\\ 2501/4500\end{array}$	974 784 1409 1958	$1000 \\ 1000 \\ 1800 \\ 2800$	114 112 211 233	694 620 860 1379	$850 \\ 750 \\ 1600 \\ 2450$	$124 \\ 123 \\ 221 \\ \dots$	605 495 784 1012	$625 \\ 430 \\ 1200 \\ 1200$	$134 \\ 132 \\ 231 \\ 433$	805 833	 900 900	533 533
150		$\begin{array}{r} 220 \\ 440/550 \\ 2000/2500 \\ 2501/4500 \end{array}$	1463 941 1460 1958	$ \begin{array}{r} 1550 \\ 1100 \\ 1800 \\ 2800 \\ \end{array} $	116 114 211 233	1224 638 866 1379	$ \begin{array}{r} 1900 \\ 750 \\ 1600 \\ 2450 \end{array} $	133A 123 221 333	865 605 784 1012	950 625 1200 1200	$ \begin{array}{r} 136 \\ 134 \\ 231 \\ 433 \end{array} $	805 833	 900 900	533 533
·	125	$\begin{array}{r} 220\\ 440/550\\ 2000/2500\\ 2501/4500\end{array}$	1463 941 1460 1958	$1550 \\ 1100 \\ 1800 \\ 2800$	$116 \\ 114 \\ 211 \\ 233$	1440 638 866 1379	$2000 \\ 750 \\ 1600 \\ 2450$	142A 123 221 333	865 605 784 1012	950 625 1200 1200	136 134 231 433	805 833	 900 900	533 533
175	••••	$\begin{array}{r} 220\\ 440/550\\ 2000/2500\\ 2501/4500\end{array}$	1527 941 1498 2000	$1600 \\ 1100 \\ 1800 \\ 2800$	$116 \\ 114 \\ 211 \\ 233$	1510 638 873 1421	$2000 \\ 750 \\ 1600 \\ 2450$	142A 123 221 333	865 605 784 1012	950 625 1200 1200	$136 \\ 134 \\ 231 \\ 433$	805 833	 900 900	533 533
	150	$\begin{array}{r} 220\\ 440/550\\ 2000/2500\\ 2501/4500\end{array}$	1527 941 1498 2000	1600 1200 1800 2800	$116 \\ 114 \\ 211 \\ 233$	1510 638 873 1421	$2000 \\ 750 \\ 1600 \\ 2450$	142A 123 221 333	865 605 784 1012	950 625 1200 1200	$136 \\ 134 \\ 231 \\ 433$	805 833	 900 900	 533 533

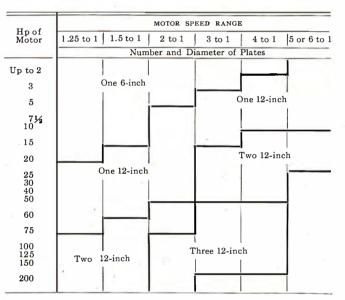
* If standard exciter rating is higher than 12 kw at 125 volts (or 24 kw at 250 volts), add \$102 to the above prices.

Enclosed-type Control for Constant- and Adjustable-speed, Shunt- or Compound-wound **Direct-current Motors**

				Sta	arters							Starte	rs and Sj	peed Re	gulator	s			
			MAN	UAL		MAG	NETIC		Ма	FIELD nual	CONTRO	1	agnetic	AR	MATURI	E CONTI	ROL	ARMA AND	BINED ATURE FIELD TROL
Нр	Volts	Start- ing Rheo- stat		Swi CR Resi CR CR	rum itch, 3108 nd istor, 3190, ass or 135	Defi- nite- time Starter, Non- re- vers-	Defi- nite- time Starter, Re- vers- ing	Speed- regu- lating Rheo- stat		CR310 Resi CR314 Star Resi CR3	Switch 5, Field stor, 14, and ting stor, 3190, 34 or 13:	Defi- nite- time Starter, Non- re- vers-	Defi- nite- time Starter, Re- vers- ing	regul Rhe For Ma- chine Serv-	eed- ating ostat For Fan Serv- ice	Sw: CR a Res	rum itch, 3108, nd istor, 3190	Spe regul Rhee For Ma- chine Serv-	eed- lating ostat For Fan Serv- ice
		‡ CR- 1003		Cast- grid Res.	Non- break- able Res.	ing (See NOTE)	(See NOTE)	CR- 1203		Cast- grid Res.	Non- break- able Res.	ing (See NOTE) §	.(See NOTE) §	ice CR- 1220	CR- 1224	Cast- grid Res.	Non- break- able Res.	ice CR- 1240	CR- 1244
1/8-1/2	115-230 550	\$14 25				*\$46 *90	‡\$167 ‡ 182	\$40	· · · · ·	·	 	*\$125 *133	‡\$195 ‡ 210	\$31 31	\$31 31			\$51 51	\$51 51
3⁄4-1	$115 \\ 230 \\ 550$	14 14 25		 	\$127 127 127	*46 *46 *90	‡ 167 ‡ 167 ‡ 182	40 40			\$114 114 143	*125 *125 *133	‡ 195 ‡ 195 ‡ 210	33 33 33	33 33 33		\$134 134 134	53 53 53	53 53 53
1½	115 230 550	20 20 25		 	127 127 127	*46 *46 *90	‡ 167 ‡ 167 ‡ 182	40 40			114 114 143	*125 *125 *133	‡ 195 ‡ 195 ‡ 210	46 46 65	46 46 65		134 134 134	80 80 85	80 80 85
2	115 230 550	20 20 25	 	· • • • • • • • •	127 127 127	*46 *46 *90	167 167 167 182	40 40			114 114 143	*125 *125 *133	195 195 195 210	46 46 65	46 46 65		134 134 134	80 80 85	80 80 85
3	115 230 550	20 20 25	· · · · · · · · · · · · · · · · · · ·	····	127 127 127	*46 *46 *90	+ 102 + 170 + 167 + 182	42 42			114 114 143	*128 *125 *133	198 195 195 210	54 54 69	54 54 69	••••	134 134 134	86 86 88	86 86 88
5	115 230 550	25 25 26	····	···· ····	127 127 127 127	*71 *52 *90	102 1205 170 182	42 42			143 143 143	*153 *128 *133	† 233 † 198 † 210	94 87 92	94 87 92		141 141 141	118 118 120	118 118 120
7 ½	115 230 550	41 26 31	····· ····	••••• •••• ••••	202 134 134	*155 *52 *105	102 1 290 1 200 1 217	51 51			225 150 150	*218 *148 *158	1 318 228 245	112 94	112 94	\$212 143	215 146 146	140 129	140 129
10	$ \begin{array}{r} 115 \\ 230 \end{array} $	51 46 80		····	206 137 137	*160 *71 *105	+ 210 † 300 † 205 † 217	85 85		····	228 153 153	*228 *153 *158	1 328 1 233 1 245	121 99	121 99	212 143	223 154 154	158 145	158 145
15	550 115 230 550	55 53 83	····	· · · · · · · · ·	281 211 142	*250 *150 *115	+ 450 + 280 + 230	85 85			299 233 158	*338 *208 *168	+ 478 + 308 + 255	180 147	180 147	313 243 174	313 243 174	169	169
20	115 230 550	72 53 88	••••	\$282 212 143	288 217 148	*270 *155 *120	1 505 1 290 1 232	132 85		\$300 234 234	305 239 239	†363 *218 *173	‡ 533 ‡ 318 ‡ 260	248 167	248 167	313 243 174	328 258 189	194 	194
25	115 230 550	88 58 174	••••• ••••	428 212 212	433 217 217	†410 *160 *190	+ 705 + 300 + 349	132 85	· · · · ·	441 300 234	446 305 239	†508 *228 *264	1 743 1 328 1 368	292 225	292 225	489 273 273	494 278 278		
30	115 230 550	94 72 174	ल • • • • • • • •	428 282 212	433 287 217	†420 *250 *195	1 725 450 354	142 132		441 300 234	446 305 239	†528 *338 *269	+ 763 + 478 + 373	369 322	369 322	503 357 287	513 367 297		
40	115 230 550	212 94 174	2022	428 282 283	439 294 294	135 †435 *270 *205	+ 745 + 505 + 363	142	····»	441 234	453	†548 *363 *274	+ 773 + 533 + 382	409 359	409 359	518 372 372	551 405 405		
50	115 230 550	274 99 181	····	428	453 308	†605 †410 *210	+ 303 +1120 + 705 + 369	150	····	441 300	466	†760 †508 *279	11170 743 388	547 432	432	549 403	589 443		
60	$\begin{array}{c} 115\\ 230\end{array}$	282 220 220		428	461 476	†620 †420 *333	‡1150 ‡ 725	····		441 300	474 349	†790 †528 *403	1200 763 556	594	594	579 638	627 734	•••	
75	550 115 230 550	220 220 220	••••• •••••	428 428 428	474	+635 +435 *343	‡ 531 ‡1175 ‡ 745 ‡ 541	· · · · · · · · · · · · · · · · · · ·		441	525	+815 †548 *418	‡ 000 ‡1225 ‡ 773 ‡ 571		····	638 668	684 860		
100	230 550	220 282 220	••••• ••••	428	555	†605 †463	+ 541 1120 1800			441	568	+760 +583	11170 828			728	1034		
125	230 550	293 236			±	†620 †483	11150 1 820			,	····	†790 †603	11200 5 848	· · · · ·				 	
150	230 550	293 236	· · · · ·			†635 †503	11175 ‡ 840		::::			†815 †623	‡1225 ‡ 868					 	
200	230 550																		

* Add CR2943-A200A push-button station at \$2. † Add CR2940-2A1 push-button station at \$6. ‡ Add CR2940-3A1 push-button station at \$8. § Prices do not include field rheostat. NOTE: For type and function of starter, see Industrial Control Catalog, GEA-606.

Plate-type D-c Field Rheostats


	PRICES													
No. and	CR8000	CR8001	CR8070	CR8100	CR8170	CR8470								
Diameter of Plates	For Front-of- board Mounting *	For Back-of- board Mounting *	Totally Enclosed, for Front-of-board Mounting	Chain-operated, for Floor Mounting *§	Totally Enclosed, Chain-operated for Floor Mounting	Totally Enclosed, Motor-operated ‡								
1-6-in. 2-6-in. 3-6-in. 4-6-in.	\$7 14 21 27	\$9 16 23 29	\$13 26 38 50											
1—10-in. 2—10-in. 3—10-in. 4—10-in.	9 18 27 40	11 20 29 42												
1—12-in. 2—12-in. 3—12-in.	13 23 36	15 25 38	19 37 54	\$29 39 52	\$33 51 58	\$98 120 141								
4—12-in. †5—12-in. †6—12-in.	48 64 80	50 66 82	70 86 102	64 80 96	84									
1—15-in. 2—15-in. 3—15-in.	17 30 46	19 32 48		33 46 62	·									
4—15-in. †5—15-in. †6—15-in.	63 80 96	65 82 98		79 96 112										

For Monel metal contacts, make following additions: 6-in. size \$2 per plate; 12-in. size, \$4 per plate; 15-in. size, \$6 per plate.

For replacements only.
 These units are furnished only with Monel metal contacts: no price increase.
 No chain or chain-operating mechanism is included with sprocket-operated rheostats.

Prices Include

- Relay heaters. 1.
- 2. CR8940-A1A field-discharge resistor.
- Separately mounted "Start-Stop" push-button 3. station (with magnetic controllers only).
- Separately mounted control-circuit transformer 4. (with high-voltage controllers only).
- Starting autotransformer (with reduced-voltage 5.controllers only).
- 6. All panels are drilled for either CR8000-B1, 12-in. rheostat, or a chain-type (Cat. No. 6173369G15, outline and drilling K-6202706 part 1 and part 2) or concentric (Cat. No. 6173369G5, outline and drilling K-6202706 part 1 and part 2) rheostat-operating mechanism. Space is provided for mounting a maximum of two 12-in. plates, back-of-board only.

* For rheostats for use with motors having basic speeds lower than 300 rpm, refer to the Company.

STANDARD DIMENSION PRINTS

Approximate mounting dimensions are given on pages 79-95. Listed below are standard dimension prints, covering most G-E motors, which can be approved for construction.

Single-phase

Type KCJ.	Open.	GEM-1094
Type KC	Open.	GEM-1091
Type KC	Open (Frames 37–78)	GEM-847
Type KH.	Open (Frames 15–77)	GEM-850
Type SCR	Open	GEM-600

Polyphase

Types K and KG	Open. Frames 203-326, Tri-Clad	GEM-1088
Types K and KG	Open, Frames 364-505, Tri-Clad	GEM-1100
Types K and KG	Splashproof, Frames 203–326, Tri-Clad	GEM-1095
Types K. KF, and KG	Splashproof, Frames 364-505.	GEM-968
Туре К	Totally enclosed, standard, Frames 204-326	GEM-549
Туре К	Totally enclosed, explosion-proof, Frames 204-254.	GEM-861
Types K. KF, and KG.	Totally enclosed, fan-cooled, standard and explosion-proof, Frames 224-326.	GEM-860
Types K, KF, and KG	Totally enclosed, fan-cooled, standard, Frames 364-505.	GEM-853
Types K, KF, and KG.	Totally enclosed, fan-cooled, standard. Frames 364-505 (S and Z)	GEM-766
Types K, KF, and KG.	Totally enclosed, fan-cooled, explosion-proof, Frames 364-505.	GEM-854
Types K, KF, and KG.	Totally enclosed, fan-cooled, explosion-proof, Frames 364-505 (S and Z)	GEM-767
Types K and KG	Open. vertical, solid-shaft, Frames 203-326, Tri-Clad.	GEM-1111
Types K, KF, and KG	Open, vertical, solid-shaft, Frames 364-505	GEM-728
Туре М	Open, Frames 204–326	GEM-650
Туре М	Open, Frames 364-505	GEM-655

Synchronous

Types TS and QS.....

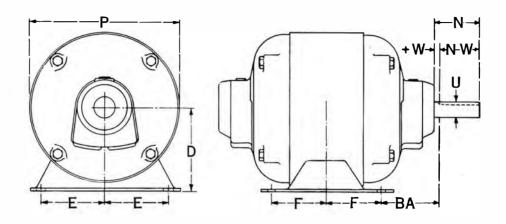
"900 Series"

GEM-1101, 1102

Direct-current

Type BC	Fraction	al-horsepower (Frames 28-76)	GEM-852
Type B.	Frames	203–284	GEM-550
Type CD	Frames	66–95, sleeve-bearing	GEM-920
		1126-1138 sleeve or ball bearings.	GEM-1082
		1235-1242 sleeve or ball bearings.	GEM-1083
Type CD	Frames	1337-1345 sleeve or ball bearings.	GEM-1084
1)po 02	1 1011100	1441-1447 sleeve or ball bearings.	GEM-1085
		1539–1556 sleeve or ball bearings.	GEM-1086
		1638-1655 sleeve or ball bearings.	
Type CD	Frames	66-95 hall-hearing	GEM-921

Pacific, General Electric Motorized, Speed Reducers


Fractional-hp motors combined with the Type MW speed reducer	GEM-930
Fractional-hp motors in combination with Types MS and MR speed reducers	GEM-931
Integral-hp motors, Types K, KG, and KR, open and splashproof horizontal, Frames 203 to 326 inclusive, in combination with the Type MS speed reducer	GEM-1120
Integral-hp motors, Types K, KF, and KG, open horizontal, Frames 364 to 504 inclusive, in combination with Type MS speed reducer	GEM-938
Integral-hp motors, Types K, KG, and K, open and splashproof horizontal, Frames 203 to 326 inclusive, combined with the Type MR speed reducer.	GEM-1122
Integral-hp motors, Types K, KF, and KG, open horizontal, Frames 364 to 445, combined with the Type MR speed reducer.	GEM-940
Integral-hp motors, Types K, KG, and KR splashproof, horizontal Frames 203 to 365, combined with the Type MT speed	OPM 1104
reducer.	GEM-1124
Integral-hp motors, Types K, KF, KG, and KR totally enclosed, fan-cooled, horizontal. Frames 204 to 326, combined with the Type MS speed reducer. Integral-hp motors, Types K, KF, and KG totally enclosed, fan-cooled, horizontal, Frames 364 to 504, combined with speed	GEM-942
reducer Type MS	GEM-943
Integral-hp motors, Types K, KF, KG, and KR totally enclosed, fan-cooled. horizontal, Frames 204 to 326, combined with the Type MR speed reducer.	GEM-944
Integral-hp motors, Types K, KF, and KG totally enclosed, fan-cooled, horizontal. Frames 364 to 445, combined with the Type MR speed reducer.	GEM-945
Integral-hp motors, Types K, KF, KG, and IR totally enclosed, fan-cooled, horizontal, Frames 204 to 365, combined with the Type MT speed reducer.	GEM-946
Integral-hp motors, Types M and MR, open horizontal. Frames 224 to 326, combined with the Type MR speed reducer	GEM-970
Integral-hp motors, Types M and MR, open horizontal. Frames 364 to 504, combined with the Type MR speed reducer	GEM-971
Integral-hp motors, Types M and MR, open-horizontal. Frames 224 to 326, combined with the Type MS speed reducer.	GEM-972
Integral-hp motors, Types M and MR, open horizontal, Frames 364 to 504, combined with the Type MS speed reducer	GEM-973
Integral-hp motors. Types K, KF, KG, and KR, explosion-proof, Frames 204 to 326 inclusive, combined with the Type MS	
speed reducer.	GEM-974
Integral-hp motors, Types K, KF, KG, and KR, explosion-proof, Frames 204 to 326 inclusive, combined with the Type MR speed reducer.	GEM-975
Integral-hp motors, Types K, KF, KG, and KR, explosion-proof, Frames 204 to 365 inclusive, combined with the Type MT	
speed reducer.	GEM-976
Integral-hp motors, Types K. KF, and KG, open vertical. Frames 204 to 405 inclusive. combined with the Type SV speed	0.000
reducer.	GEM-988
Integral-hp motors, Types K. KF, and KG, open vertical, Frames 204 to 505 inclusive, combined with the Type MR speed reducer	GEM-989

GENERAL 🌚 ELECTRIC

78

MOUNTING DIMENSIONS FOR F-HP GENERAL-PURPOSE MOTORS Types K, KC, KH, and BC, Frames 23 to 79

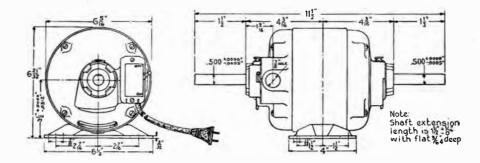
Open and Totally Enclosed, Sleeve and Ball Bearings, Solid and Resilient Base

						DIMENS	SIONS IN	INCHES				
Motor Frame,	Motor Ratings	KEY	WAY	Length								
Group		Width	Depth	of Flat or Key	U	N	D	E	F	Р	BA	N-W
20	All	Flat	3/64	3⁄4	5/8	1 1/4	2 5/8	1 3/4	27/32	* 4 5/8	21/16	1 1/8
30	All	Flat	3/64	1 1/8	1/2	1 %/16	3	21/8	1 5/8	51/2	21/2	11/2
10	% Hp, 1725 Rpm and Smaller See Note 1 Also "Special-service" Motors	Flat	3/64	1 1/8	1/2	1 9/16		97.4	11/			11/2
40 -	1/4 Hp, 1725 Rpm and Larger See Note 2	3/16	3,32	11/2	5/8	115/16	31⁄2	27/16	1 1/2	6 5/16	2 3/4	1 7/8
60	All	3/16	3/32	1 7/8	3⁄4	2 5/16	4 1/8	2 15/16	21/2	712	31/16	$2\frac{1}{4}$
70	All	3.16	3/32	1 3/8	3/	2 5/16	4 5/8	31/4	2 3/4	87/16	31/16	21/4

* Direct-current motors, Type BC, the "P" dimension =4 7/16 inches. NOTE 1.—Includes ¼ hp, 3450 rpm; ¼ hp, 1725 rpm; ½ hp, 1140 rpm; ½ hp, 860 rpm; 60-cycle and corresponding odd-frequency ratings; and all smaller ratings built in this frame group.

NOTE 2.—Includes ½ hp, 3450 rpm; ¼ hp, 1725 rpm; ½ hp, 1140 rpm; ½ hp, 860 rpm; 60-cycle and corresponding odd-frequency rations; and all larger ratings built in this frame group. ↑ W =Allowance for variation in castings after final assembly. For complete dimensions and tolerances, ask for the appropriate GEM print as listed on page 78.

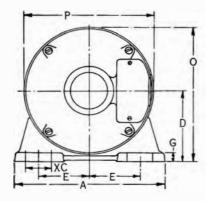
Approximate Net Weights in Lb of Fractional-hp Motors

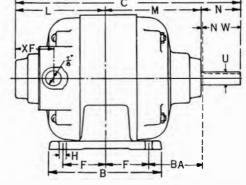

			MOTOR	TYPE							MOTOR	R TYPE			
K		K	C	k	h	В	С	1	۲.	k	KC .	K	н		BC
Frame	Net Wt	Frame	Net Wt	Frame	Net Wt	Frame	Net Wt	Frame	Net Wt	Frame	Net Wt	Frame	Net Wt	Frame	Net Wt
37 43 45 47 49	23½ 20 24 27 31	37 43 45 47 49 48	24 ¹ / ₂ 21 24 27 30 30 30 30 30 37 37 37	23 25 27 33 35 37 43	$ \begin{array}{c} 10 \\ 11\frac{1}{2} \\ 13 \\ 15 \\ 16\frac{1}{2} \\ 23\frac{1}{2} \\ 20 \end{array} $	28 36 38 42 44 45	$ \begin{array}{r} 10^{\frac{1}{2}} \\ 21 \\ 22 \\ 24 \\ 28 \\ 31 \\ \end{array} $	63 67 73 77	40 54 51 70	63 67 69 73 75 77 77 78	$\left\{\begin{array}{c} 42\\ 43\\ 56\\ 59\\ 64\\ 54\\ 62\\ 70\\ 74\\ 90\\ 90\end{array}\right.$	45 47 49	24 28 35	46 66 68 74 76	32 50 52 66 76

GENERAL 🍘 ELECTRIC

MOUNTING DIMENSIONS FOR DRIPPROOF, FRACTIONAL-HP, SINGLE-PHASE, CONSTANT-SPEED 60-CYCLE MOTORS

For Small-workshop Machines and Similar Devices


Type KH, Split-phase, Frame 45, Horizontal, Two Sleeve Bearings

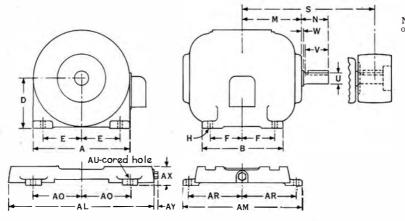


MOUNTING DIMENSIONS FOR TOTALLY ENCLOSED, FRACTIONAL-HP, **SQUIRREL-CAGE INDUCTION MOTORS**

With Malleable Cast-iron Base

For Machine-tool and Other Industrial Applications—Type K, 2- and 3-phase, Frames 43 to 65 Inclusive Horizontal, Two Ball Bearings

		Approx				_				App	roxim	ate I	Dimer	sions	in Incl	hes							
Туре	Frame	Net Wt in Lb	KEY Width	WAY Depth	Length of Key	Α	В	с	D *	Е	F	G	н	L †	M †	N	N-W ‡	0	Р	U §	BA	xc	XF
K K	$43 \\ 45$	$\frac{24}{27}$	3/16 3/16	3/32 3/32	$1\frac{1}{2}$ $1\frac{1}{2}$	$6\frac{1}{2}$ $6\frac{1}{2}$	$\frac{4}{4}$	$9^{13}_{16}_{10^{5}_{16}}$	312 312	27/16 27/16	11/2 11/2	7/16 7/16	11/32 11/32 11/32	$3^{11}_{43/16}$	4 3/16 4 ³ /16	$1^{15}_{16}_{115}_{16}_{16}$	178 178	6^{21}_{32} 6^{21}_{32}	6 ⁵ /16 6 ⁵ /16	5/80	23/4 23/4	7/8 7/8	1 9/16 1 9/16
K K	63 65	$45 \\ 50$	3/16 3/16	3/32 3/32 3/32	178 178	83/8 85/8	6 ³ /8 6 ³ /8	1276 133%	4 ½ 4 ½	$2^{15}_{2^{15}_{16}}_{2^{15}_{16}}_{2^{15}_{16}}$	$2\frac{1}{2}$ $2\frac{1}{2}$	1/2 1/2	13_{32} 13_{32} 13_{32}	$51/_{15}$ 59/16	$5\frac{1}{2}$ $5\frac{1}{2}$	25/16 25/16	$2\frac{1}{4}$ $2\frac{1}{4}$	77/8 77/8	71 <u>/2</u> 71 <u>/2</u>	3/4 3/4	3 1/16 3 1/16	1 1/2 1 1/2	$2^{1}_{2^{1}_{3^{2}}}$


* Height of center line of shaft at end of standard shaft will come within the limits of +0.0000 inch, -0.0312 inch.
† These dimensions may vary plus or minus 1/6 inch.
‡ Dimension "W" is a variation which may occur in castings and assembly operations.
§ Shaft diameter will come within the limits of +0.0000 inch, -0.0005 inch.

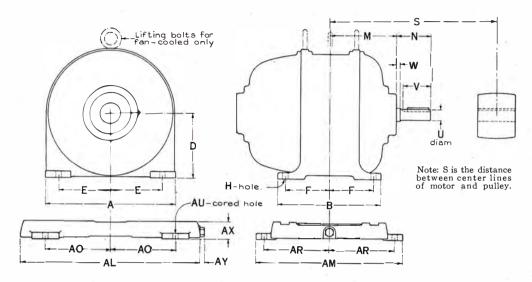
 $AA = For \frac{1}{2}$ -inch standard conduit coupling.

GENERAL 🎲 ELECTRIC

MOUNTING DIMENSIONS FOR HORIZONTAL "TRI-CLAD" A-C MOTORS

Open { Types K, KG, KR (2- and 3-phase), Frames 203 to 505 Types KC, KCJ (Single-phase), Frames 203 to 225 Splashproof—Types K, KG, KR (2- and 3-phase), Frames 203 to 326

Note: S is the distance from center line of motor to center line of pulley.


Frame.		WT IN								DI	MENSI	ONS	IN IN	CHES											
Base, and Pulley	Motor			Pu	lley	Key	way	1					1	1	1	1		1.1.	1	[1		1		-
Pulley No.	Only *	Base	Pulley	Diam- eter	Width Over- all	Width	Depth	A	в	D	Е	F	н	м	N	S	U	v	w	AL	AM	AO	AR	AU	AX
$\frac{203}{204}$	67 74	19 20	1 1/4	3	3	3/16	3/32	93/4	67/8 77/8	5	4	23⁄4 3 1⁄4	13/32	53/4 6 1/4	23/8	73/8	3/4	2	1/8	14	$\frac{11}{12}$	5	43/4 51/4	1/2	1 3/4
$\begin{array}{c} 224\\ 225 \end{array}$	92 105	22 23	23⁄4	4	31⁄2	1/4	1/8	11	81/8 87/8	5½	41⁄2	3 5/8 3 3/4	13/32	$6\frac{34}{7\frac{1}{8}}$	3 1/8	85⁄8 9	1	2¾	1⁄8	151/2	$12\frac{1}{14}$	51/2	5 5/8 5 3/4	1/2	13/4
254	141	28	31/2	41/2	41/2	1⁄4	1/8	121/2	10	61/4	5	4 1/8	17/32	8 ³ /16	3 %/16	10 5/8	1 1/8	3 1/8	3/16	1734	151%	6¼	65/8	5/8	2
Ź84	192	33	5	5	41/2	1⁄4	1/8	14	11 5/8	7	51/2	43/4	17/32	9 ⁵ /16	315/16	113/4	1 1/4	31⁄2	3/16	193/4	16 1/8	7	71/2	5/8	2
324 326	256 288	45 53	8 ¹ ⁄2 15	· 6 8	5½ 6¾	5/8	3/16	157/8	12 ¾ 14¼	8	6¼	$5\frac{1}{4}$ 6	² ¹ / ₃₂	10 ⁵ /16 11 ¹ /16	51/16	$13\frac{1}{4}$ $14\frac{5}{8}$	1 5⁄8	4 5/8	3/16	2234	$19\frac{1}{4}$ $20\frac{3}{4}$	8	8½ 9¼	3/4	21/2
364 364S	380	74	21	9	73/4	1/2 3/8	14 3/16	161/2	133/4	9	7	55/8	21/32	1114	57/8 31/2	15%	1 7/8 1 5/8	5 5⁄8 3	1/4	251/2	201/2	9	91/8	3/4	232
365 365S	430	87	21	9	73/4	1/2 3/8	1/4 3/16	16½	1434	9	7	61/8	21/32	1134	57/8 3 1/2	15 7/8	1 1/8	5 5/8 3	1/4	251/2	211/2	9	95/8	3⁄4	21/2
404 404S	620	103	32	10	83/4	1/2 1/2	1/4 1/4	19	151/4	10	8	61/8	13/16	127/16	61 / 16 4 1/16	171/8	21/8	61/8 31/2	5/16	283/4	22 3/8	10	91/8	7/8	3
405 405S	665	106	32	10	83/4	1/2 1/2	14	19	16¾	10	8	61/8	13/16	133⁄16	811/16 41/16	173/8	21/8	61/8 31/2	5/16	283/4	237/8	10	135%	7/8	3
444 444S	875	125	47	12	11	5/8 1/2	5/16 1/4	21 14	173/4	11	9	7 1/4	13/16	147/16	77/16 49/16	20 1/4	2 3/8 2 1/8	67⁄8 4	5/16	31 1/4	245/8	11	11	7/8	3
445 445S	1010	129	47	12	11	5/8 1/2	5/16 14	21 1/4	193/4	11	9	8 1/4	13/16	157/16	77/16 49/16	21 1/4	2 3/8 2 1/8	67⁄8 4	5/16	31 1/4	265/8	11	12	7/8	3
504U 504S	1285	162	97	15	13	3/4 1/2	3/8 1/4	24 1/4	191⁄2	121/2	10	8	15/16	163/13	8 ¹⁵ /16 4 ⁹ /16	23	27/8 23/8	85⁄8 4	5/16	35	28.	121/2	121/2	1	31/2
505 505S	1425	166	97	15	13	3/4 1/2	5/8 1/4	24 1/4	21 1/2	121/2	10	9	15/16	173/16		24	2%	83% 4	5/16	35	30	121/2	131/2	1	31/2

These weights are for open polyphase motors. For net weights of other motors, refer to page 83. For shipping weights, add 15 per cent to the net weights. For complete dimensions and tolerances, ask for appropriate GEM print as listed on page 78.

MOUNTING DIMENSIONS OF STANDARDIZED FRAMES 203 TO 505

For A-c and D-c Motors

All Types Except Tri-Clad: Single-phase (SCR only), Polyphase, and D-c Horizontal, Ball and Sleeve Bearings, Open,* Splashproof, Totally Enclosed, and Fan-cooled

-		ROXIM										DIN	IENSI	ONS IN	INCHES			1							
Frame, Base,	NET	WT IN	LB	Pı	ulley	Key	way	1															6		
Pulley No.	Motor Only	Base	Pulley	Dia	Width	Width	Depth	A	B :	D	Е	F	Н	M *	N *	U	v	W *	AL	AM	AO	AR	AU	AX	S
$\frac{203}{204}$		$\frac{19}{20}$		3 3	$\frac{3}{3}$	3/16 3/16	3/32 3/32	$\begin{array}{c}10\\10\end{array}$	7½ ‡8	5 5	4 4	$\frac{2\frac{3}{4}}{3\frac{1}{4}}$	$\frac{13}{32}$ $\frac{13}{32}$	$5^{11/16}$ $16^{3/16}$	27/16 \$27/16	3/4 3/4	$\frac{2}{2}$	³ /16 ³ /16	14 14	$\overline{\begin{array}{c}11\\12\end{array}}$	5 5	43/4 51/4	1/2 1/2	$1\frac{3}{4}$ $1\frac{3}{4}$	75/2
224 225 226		22 23	23/4 23/4 3	$\begin{array}{c} 4\\ 4\\ 4\\ 4\end{array}$	$3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$	1/4 1/4 1/4	1/8 1/8 1/8	11 11 11	‡8 5⁄8 ‡9 1⁄8 11	$5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$	$4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$	3 5/8 3 3/4 4 1/2	13/32 13/32 13/32 13/32	$ \begin{array}{r} $	$\begin{array}{c} 133 \\ 133 \\ 133 \\ 3316 \\ 3316 \\ 3316 \end{array}$	$\begin{array}{c}1\\1\\1\end{array}$	234 234 234		15½ 15½	$12\frac{1}{4}$ 13 -	5½ 5½	53/8 53/4	1/2	$1\frac{3}{4}$ $1\frac{3}{4}$	85/8 9 9 3/4
254 §255		$\frac{28}{25}$	31⁄2 4	41/2 41/2	$4\frac{1}{2}$ $4\frac{1}{2}$	$\frac{\frac{1}{4}}{\frac{1}{4}}$	1/8 1/8	$\frac{12}{12}$	^{‡10} 10 ⁷ / ₈	6¼ 6¼	$\frac{5}{5}$	4 1/8 4 1/2	17/32 17/32	28 3/16 8 7/32	^{‡3 9} /16 3 ²⁹ /32	1 1/8 1 1/8	3 1/8 3 1/8	‡ 3×16 17/32	1734 175/8	151⁄8 15	$6\frac{1}{4}$ $5\frac{1}{2}$	65% 634	5/8 3/4	2 2 3⁄4	105% 11
284		33	5	5	41/2	1/4	1⁄8	1334	‡ 11 ½	7	51/2	4 ¾	17/32	9.5/16	$3^{15}/16$	11/4	31⁄2	3/16	193⁄4	163/8	7	71/2	5⁄8	2	1134
324 326		$\frac{45}{53}$	81⁄2 15	$\frac{6}{8}$	51/2 63/4	5/8 5/8	3/16 3/16 3/16	$15\frac{1}{4}$ $15\frac{1}{4}$	$12\frac{1}{14}$	8 8	$6\frac{1}{4}$ $6\frac{1}{4}$	$5\frac{1}{4}$ 6	21/32 21/32 21/32	$10^{1}/16$ $11^{1}/16$	5^{5} 16 5^{1} 16	1 5⁄8 1 5⁄8	45% 45%	7/16 3/16	223⁄4 223⁄4	$19\frac{1}{4}$ $20\frac{3}{4}$	8 8	8½ 9¼	3/4 3/4	21/2 21/2	$13\frac{1}{14}$
364 364S 365 365S		74 87	$\frac{21}{21}$	9 9	734 734	1930	$\frac{\frac{1}{4}}{\frac{3}{16}}$	$16\frac{1}{2}$ $16\frac{1}{2}$ $16\frac{1}{2}$ $16\frac{1}{2}$	$13\frac{3}{13}\frac{3}{4}$ $13\frac{3}{4}\frac{14\frac{3}{4}}{14\frac{3}{4}}$	9 9 9 9	7 7 7 7	55%	$\begin{array}{r} 21 \\ 32 \\ 21 \\ 32 \\ 21 \\ 32 \\ 21 \\ 32 \\ 21 \\ 32 \end{array}$	1114 1114 1134 1134	578 312 578 312	17/8 15/8 17/8 15/8	55% 3 55% 3	1/4 1/4 1/4 1/4	251⁄2 251⁄2	201/2 211/2	9 9	9 1/8 95/8	³ /4 ³ /4	_	15% 15%
404 404S 405 405S		103 106	$\frac{28}{28}$	10 10	7 3 <u>4</u> 7 3 <u>4</u>	1/21/2		19 19 19 19	$15\frac{1}{4}$ $15\frac{1}{4}$ $16\frac{3}{4}$ $16\frac{3}{4}$	10 10	8 8 8	6 1/8 6 1/8 6 7/8 6 7/8 6 7/8	13/16 13/16 13/16	$\frac{127}{127}_{16}$ $\frac{127}{16}$ $\frac{133}{16}$ $\frac{133}{16}$	$\begin{array}{r} 6^{11} 16 \\ 4^{1} 16 \\ 6^{11} 16 \\ 4^{1} 16 \\ 4^{1} 16 \end{array}$	2 1/8 1 7/8 6 1/8 1 7/8	6 1/8 31/2 6 1/8 31/2	5/16 5/16 5/16 5/16 5/16		22 5/8 23 7/8	10 10	9 <u>7/8</u> 10 <u>5/8</u>	7/8 7/8	3 3	165/8 175/8
444 444Z 445 445S 445Z		$125 \\ 129 \\$	$\begin{array}{c} 40\\ \underline{40}\\ \underline{-}\\ \end{array}$	11 11 	934 934	5/8 1/2 5/8 1/2 1/2	5/16 1/4 5/16 1/4 1/4 1/4	$ \begin{array}{c} 21 \frac{1}{4} \\ \end{array} $	$ \begin{array}{r} 17 \frac{3}{4} \\ 17 \frac{3}{4} \\ 19 \frac{3}{4} \\ \end{array} $	11 11 11	9 9 9 9	714 714 814 814 814	13/16 13/16 13/16 13/16 13/16 13/16	$ \frac{14^{7}/16}{14^{7}/16} \\ \frac{15^{7}/16}{15^{7}/16} \\ \frac{15^{7}/16}{15^{7}/16} \\ \frac{15^{7}/16}{15^{7}/16} \\ \frac{15^{7}}{15^{7}} \\ \frac{15^{7}}{16} \\$	77/16 41/16 77/16 49/16 49/16 41/16	23/8 17/8 25/8 21/8 17/8	$ \begin{array}{r} 678 \\ 312 \\ 678 \\ 4 \\ 312 \\ 312 \\ 678 \\ 4 \\ 312 $	5/16 5/16 5/16 5/16 5/16 5/16	31 ¼ 31 ¼	245/8 265/8	11 11 	$\frac{11}{12}$	7/8 7/8 	3 3 —	195% 205%
504 504S 504Z 505 505S 505S 505Z		162 166	47 	12 	11 13 	5/8 1/22 1/22	5/16 1/4 1/4 5/8 1/4 1/4	231/2 231/2 231/2 231/2 231/2 231/2 231/2	191_{2} 191_{2} 211_{2} 211_{2}	112.5	110	888999	15/16 15/16 15/16 15/16 15/16 15/16 15/16	16^{3}_{16} 16^{3}_{16} 16^{3}_{16} 17^{3}_{16} 17^{3}_{16} 17^{3}_{16} 17^{3}_{16}	$\begin{array}{r} 8 \ 3 \ 15 \\ 4 \ 9 \ 16 \\ 4 \ 1 \ 16 \\ 8 \ 15 \ 16 \\ 4 \ 9 \ 16 \\ 4 \ 1 \ 16 \end{array}$	25/8 21/8 17/8 27/8 21/8 17/8	75/8 4 31/2 85/8 4 31/8	5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16		28 30 		12½ 	1 1 	3½ 	=

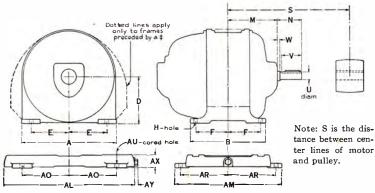
* Use this print for splashproof motors in Frames 364 to 365, S and Z only. Smaller frames are built in the Tri-Clad construction. Refer to page 81 for dimensions. However, the dimensions M, N, and W differ slightly from the above. For Frames 364 to 365, S and Z, increase M by ½ inch. In Frames 404 to 505, S and Z, increase M by ³/₁₆ inch and decrease N and W by ³/₁₆ inch.
† For approximate net weights, refer to page 83.
† These dimensions are for polyphase motors and may differ slightly for single-phase and direct-current motors. § This frame uses base No. 5. For complete dimensions and tolerances, ask for the appropriate GEM print as listed on page 78.

GENERAL 🛞 ELECTRIC

Approximate Net Weights in Lb of A-c and D-c Motors Built in Standardized Frames 204 to 505

			Polyphase					Single-phase	,		Direct-	current
		SQUIRR	EL-CAGE				TYPES S	CR, †KC, A	ND KCJ		TYF	е В
Frame No.	1			Class I,	Open,	()	STANDARD	AND CLASS	I, GROUP I			
NO.	Totally Enclosed,	Splash- proof	Stand. Totally	Group D, Class II,	Wound- rotor	0	pen	Totally I	Enclosed	Totally	Open	Fan-
	Fan-cooled	**	Encl	Group G, Totally Enclosed		SCR	кс	ксј	SCR	- Enclosed, Fan-cobled, SCR		cooled
203 204 224	$\frac{-}{130}$	75 82 100	70 100	75 115	120		70 77 99	$75\\82\\104$	 135	$\frac{-}{145}$	$95 \\ 105 \\ 145$	
225	165	113	110	125	135		113	119	145	155	160	172
$\begin{array}{c} 226\\ 254 \end{array}$	215	150	150	165	170	205				‡ 190	$\begin{array}{c}188\\210\end{array}$	207 226
$\begin{array}{c} 255\\ 284 \end{array}$	305	200	210		235	215	201				280	291
$\begin{array}{c} 324\\ 326 \end{array}$	$\begin{array}{r} 375\\440\end{array}$	270 300	$\begin{array}{r} 285\\ 340\end{array}$		310 370	335 390				375 440		
$\begin{array}{c} 364\\ 365 \end{array}$	$\begin{array}{c} 615\\ 665\end{array}$	$500 \\ 515$		1	495 510							
404 405	805 875	635 700			680 755							
444 445	1085 1190	855 950	2		895 990							
504 505	$\begin{array}{r}1395\\1580\end{array}$	$\begin{array}{c} 1165\\ 1345 \end{array}$			1220 1400						4	

* Polyphase splashproof motors in Frames 203 to 326 are Tri-Clad construction.
† Weight includes capacitor.
‡ This rating built in single-phase frame No. 3. See page 41.


.

1

MOUNTING DIMENSIONS FOR OPEN A-C POLYPHASE MOTORS

Types K, KF, and M (3- and 2-phase), Frames 544 to 579

Two Sleeve or Ball Bearings

ter lines of motor

		PROX													DIM	ENSIC	NS IN	INCHE	s										
		LB		F	Pulley	Ke	yway	1							Bear	rings		Sleeve				Bear	ings				*	1	
Frame	+-		~											Sle	eve	B	all	Bear- ings	Bear- ings		s. 1	Sleeve	Ball						
	Motor Only	Base	Pulley	Diam	Width Over- all	Width	Depth	A	В	D	Е	F	н	м	N	М	N	s	s	U	v	w	w	AL	ΑM	AO	AR	AU	AX
544‡	1700	155	-	-	-	3⁄4	3/8	273/4	20 3/4	143/4	117/8	81/2	15/16	1813	93/4	1818	93⁄4		-	31/8	91/8	3/8	3⁄8	363/8	26	11 7/8	12	1	31/2
546¶ 546S	1800 1700		125	16	17	3/4 3/8	3/8 5/16	2734 2734	$20\frac{3}{4}$ $20\frac{3}{4}$	$14\frac{3}{4}$ $14\frac{3}{4}$	11 7/8 11 7/8	8½ 8½	15/16 15/16	197/8 1813	1012 51/8	1818 1818	10½ 5%	28 3/8	27 5/16	3 % 2 %	91/8 41/2	3/8 3/8	3/8	36%	26	111/8	12	1	31/2
547S§ 548S¶	1950 1750	11	-	-	=	3/8	5/16 5/16	2734	22 1/4	14¾ 14¾	11%	914 914	15/16 15/16	20 16 20 16	51/8 51/8	19 18	53/8	=	=	23/8	41/2	3/8 3/8	7/8	=	1.	E	-	=	-
549Z§	2200		-	=	-	3/2	1/4	273/4	2514	143/4	111/8	10¾	15/16	2113	4 1/8	-	-	-	-	1 7/8	31/2	3/8	-	-	-	-	-	-	-
552¶	2005	180	125	16	17	3/4	3/8	301/2	20	16	131/4	8	15/16	181/8	1012	161/4	101/2	27 3/8	243/4	33/8	91/8	3/8	3/8	40 3/8	253/4	131/4	113/4	1	31/2
556¶ 557S§	2385 2750	190	191	18	19	1 3/4	1/2 3/8	30½ 30½	221/2 221/2	16 16	13¼ 13¼	9¼ 9¼	15/16 15/16	20%	12 7 ½	191/4	12	293/8	28 1/4	3 7/8 3 3/8	11 3/8 6 3/4	3/8 3/8	3/8	40 %	28 1/4	131/4	13	1	31/2
558 559S§	2790 3080		191	18	19	1 3/4	1/2 3/8	301/2 301/2	26 26	16 16	13¼ 13¼	11 11	118 118	22 3/8	12 71⁄8	21	12	31 1/8	30	37/8	113/8 63/4	3/8 3/8	3/8	40%	323/4	1314	15	1 1/8	4 1/4
5334¶ 6334S§	2500 2850	230	212	20	19	1 3/4	1/2 3/8	32 32		17 17	$13\frac{1}{2}$ $13\frac{1}{2}$	10 10	1 16	21 1/8 21 1/8	12 6½	21 1/8	12	301/8	301/8	378	11 3/8 51/2	3/8 3/8	3⁄8	4212	303/4	1335	14	1 1/8	4 1/4
3335¶ 3335S§	3000 3310		260	22	21	1 3/4	1/2 3/8	32 32	26 26	17 17	131/2	11 11	1+8 1+8	22 1/8	13½ 6½	22 1/8	1342	32 1/8	32 1/8	43/8	121/8	3/8 3/8	3/8	421/2	323/4	1312	15	1 1/8	41/4
6336¶ 6336S§	3500 3825		260	22	21	1	1/2 3/8	32 32		17 17	13½ 13½	$12\frac{1}{2}$ $12\frac{1}{2}$	1 1 8 1 1 8	235/8	13½ 6½		131/2	331/8	331/8	4 3/8 27/8	12 ¹ / ₈ 5 ¹ / ₂	3/8 3/8	3/8	421/2	35¾	131/2	16½	1 1/8	4 1/4
564¶ 564S¶	4200 4100	360	380	26	251/2	1 1/4	3/8 1/2	$\frac{38\frac{1}{2}}{38\frac{1}{2}}$		20 20	16¼ 16¼	11 11	15 16 15	23 3/8 22 3/8	15 <u>1</u> 8 <u>1/8</u>	=	_	35 ³ /16	_	47/8	143/8	7/16 3/8	Ξ	491/2	341/2	16¼	15%	1 3/8	43/4
566¶	4850	370	380	$\overline{26}$	251/2	1 1/4	3/8	381/2	291/2	20	161/4	121/4	1 5	24 3/8	$15\frac{1}{16}$	-	-	36 7/16	-	41/8	14%	7/16		491/2	37	161/4	161/8	1 3/8	43/4
566S¶ 568¶	4775 5600	400	380		251/2	1 1/4	1/2 5/8	38½ 38½	291/2 321/2	20 20	$16\frac{1}{4}$ $16\frac{1}{4}$	12 ¼ 13¾	1 5 1 5 1 5	231/8	8 1/8 15 1/6	_	-	3715/16	=	37/8	71/2	3/8 7/16		491/2	40	161/4	183/8	1 3/8	434
568S¶	5500	_	-	-		1	1/2 .	381/2	321/2	20	16 1/4	13 3/4	1 10	253/8	81/8					3 7/8	71/2	3/8	=	-	-	-	-	_	-
574¶	7150	630	380	$\overline{26}$	251/2	1 1/4	5/8	491/2	36	25	21	15	1 👬	28 3/6	1516		-	40 ³ /16	_	4 7/8	14 3/8	7/16	_	62	4434	21	201/2	1 5/8	51/2
574S¶	7600		_			1	1/2	491/2	36	25	21	15	1 18	28%	91/8	_	_			4 3/8	81/2	3/8	_	-	-	-	-	1-	

* Frame designations ending in "S" or "Z" have a short shaft extension for direct connection only.
† To find approximate net weight of wound-rotor motors, increase weight of squirrel-cage motor in same frame size 5½ to 7 per cent.
‡ Frame 544 may be used for V-belt drive.
§ These frames are the closed-box side-air-discharge construction.
¶ These frames are the skeleton frame construction.
For complete dimensions and tolerances, ask for the appropriate GEM print as listed on page 78.

GENERAL BELECTRIC

MOUNTING DIMENSIONS FOR OPEN, VERTICAL, SOLID-SHAFT SQUIRREL-CAGE "TRI-CLAD" INDUCTION MOTORS

Type K (2- and 3-phase), Frames 203 V or VY to 326V or VY Inclusive

For Direct Drive—Two Ball Bearings

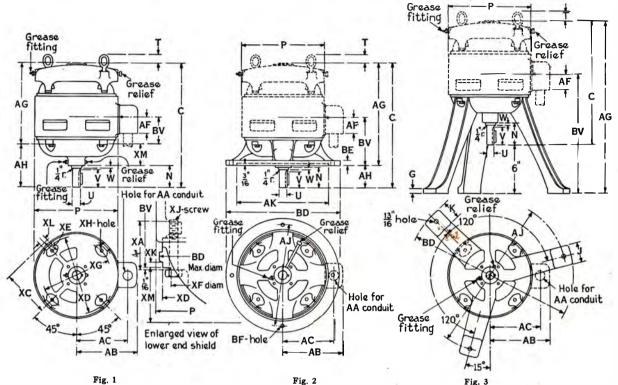


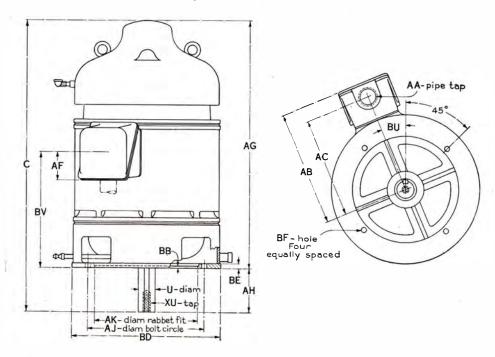
Fig. 2

Fig. 3

Provided mounting conditions permit, conduit boxes may be placed so that entrance can be made upward, downward, or from either side.

					-	-	-		_		_		I	DIMEN	SIONS I	N INC	HES							
FR	АМЕ		ROX T IN		Key	yway	60						Com	mon l	Dimens	ions							Fig. 1	
Fig. 1 and 3	Fig.	Fig.	Fig.	Fig.	Width	Depth	KeyLe	с	N	Р	Т	6	U		v	w	AA	AB	AC	AF	XA	AG	АН	BD
203VY	203V	75	- 90	98	3/16	3/32	1 3/8	14	2 3/8	911/16	2 1/4	3/4	in.	2		1/8	3/4	71/16	6	2 3/16	1 3/4*	9	5	97/16
204VY	204V	82	97	105	3/16	3/32	1 3/8	15	2 3/8	911/16	2 1/4	3⁄4	will co1 +.0000	2	ft.	1/8	3/4	71/16	6	2 3/16	1 3/4*	10	5	97/16
224VY	224V	97	112	122	1/4	1/8	2	163/4	31/8	111/8	2 3/16	1	-iiv+	23/4	length of shaf	1/8	3/4	73/4	611/16	2 3/16	115/16*	10 %/16	63/16	103/8
225VY	225V	117	132	142	1/4	1/8	2	17 1/2	31/8	11 1/8	2 3/16	1	its	23/4	s ler	1/8	3/4	73/4	611/16	2 3/16	115/16*	11 5/16	6 3/16	103/8
254VY	254V	156	175	185	1/4	1/8	2 3/8	201/10	3 %/16	12 3/8	2 1/16	1 1/8	e lin	31/8	V represents straight part	3/16	1	815/16	73/8	23/8	2 1/8	123/8	77/16	12 1/4
284VY	284V	210	235	245	1/4	1/8	23/4	2211/16	315/16	141/8	115/16	1 1/4	dia 05 ii	31/2	pre	3/16	1	911/16	83/8	25/8	27/16	141/4	87/16	133/4
324VY	324V	280	325	335	3/8	3/16	33/4	2513/16	51/16	1513/16	2 9/16	1 3/8	ithii .000	45/8	V re stra	3/16	11/4	1111/16	95%	33/4	211/16	151/8	915/16	151/4
326VY	326V	310	355	365	3/8	3/16	33/4	27 5 16	51/16	1513/16	2 9/16	13/8	- <u>2</u> § I	45/8		3/18	11/2	1111/16	95/8	33/4	211/16	173/8	915/16	151/4

	WE						1						DIME	SION	SINI	INCHES											_
FRA	ME					F	ig. 1									Fig. 2								Fig. 3			
Fig. 1 and 3,	Fig. 2	вv	xc	XD +.000" 003"	XE	XF	xG	хн	ХJ	хк	XL	хм	AG	AH	AJ	AK +.005" 000"	BD	BE	BF	BV	G	J	к	AG	AJ	BD	вv
203VY	203V	31⁄8	43/4	93/16	15/16	81/8	81⁄2	3⁄8	1 6 -18	1⁄4	1	23/8	11 1/4	23/4	121/2	11	14	11/16	17/32	53/8	7⁄8	23/4	211/16	20	183/4	201/2	14 1/8
204VY	204V	3 3/8	43/4	93/16	15/16	81/8	81⁄2	3/8	1 6-18	1/4	1	23/8	12 1/4	23/4	121⁄2	11	14	11/16	17/32	51/8	7/8	23/4	211/16	21	183/4	201/2	14%
224VY	224V	314	5 3/8	103/8	1	10 1/4	9 7/8	7/16	3∕8−16	1/4	11/16	$3\frac{1}{16}$	14	23/4	121/2	11	14	5/8	17/32	71/8	13/16	23/4	211/16	223/4	183⁄4	201/2	151/8
225VY	225V	416	5 %	105/8	1	10¼	91/8	7/16	3⁄8-16	1⁄4	1 1/16	316	1434	23/4	121/2	11	14	5/8	17/32	71/2	13/16	23/4	211/16	231/2	183/4	201/2	16 1/4
$\overline{254VY}$	254V	416	6	12	1	11 3/8	11 1/8	7/16	3∕8−16	1⁄4	1 3/16	31/8	175	23/4	121/2	11	14	3/4	17/32	9	1/8	31/4	211/16	2615	183/4	201/2	173/4
284VY	284V	418	6 %	131/2	1	13 1/8	12 3/8	7/16	\$⁄8-16	1⁄4	1 1/4	41/2	1818	41/2	16	14	18	3/4	13/16	834	13/16	31/4	211/16	2811	22	233/8	191/4
324VY	324V	5_{16}^{2}	73/8	15	1 5/16	14%	131/8	9/16	1/2-13	1⁄4	11/2	41/8	2115	41/2	16	14	18	7/8	13/16	101/8	13/16	31⁄4	211/16	31 18	22	231/8	21 3/8
326VY	326V	618	7 3/8	15	1 5/16	14%	13%	9/16	1/2-13	1/4	11/2	41/8	2218	41/2	16	14	18	1%	13/16	115%	13/16	31/4	211/16	33 🛔	22	23%	22 1/


* Dimension "XA'' is to the bottom of the tapped hole on Frames 203, 204, 224, and 225. For shipping weight of motor, add 15 per cent to the above net weights. For complete dimensions and tolerances, ask for the appropriate GEM print as listed on page 78.

MOUNTING DIMENSIONS FOR SHIELDED (Dripproof) VERTICAL SOLID-SHAFT SQUIRREL-CAGE INDUCTION MOTORS

Types K and KF (2- and 3-phase), Frames N6206 to N6312 Inclusive

Normal or High Thrust

For Direct Drive, *Ball Thrust and Guide Bearings

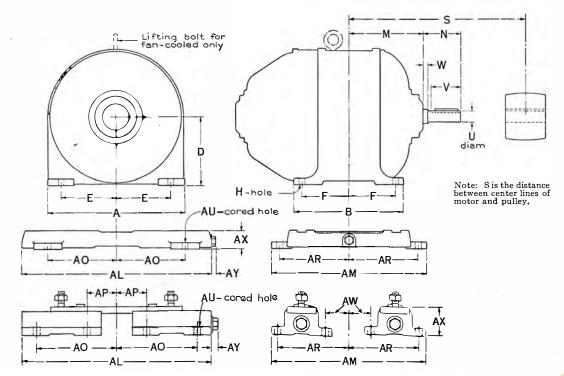
Provided mounting conditions permit, conduit boxes may be placed so that entrance can be made upward, downward, or from either side.

	Approx									I	IMENSIO	NS IN	INCH	IES							
Frame	Net Wt in Lb	Key Width	Depth	Key Length	с	U	AA	AB	AC	AF	AG	AH	AJ	AK +.005" 000"	BB	BD	BE	BF	B U Degrees	BV	xu t
N6206 N6207 N6208	285 315 385	1/4 3/8	¹ /8 ³ /16	21⁄2	$ \begin{array}{r} 26\frac{1}{2} \\ 27\frac{1}{2} \\ 29\frac{1}{2} \end{array} $	1 1/4 1 3/8	$\frac{1}{\frac{1\frac{1}{4}}{1\frac{1}{2}}}$	11 %	93/8	2 1/4	22 23 25	41⁄2	1434	131/2	1⁄4	163/8	3/8	11/16	0	8 ¹ / ₈ 8 ³ / ₈ 9 ³ / ₈	_
N6301 N6302	$500 \\ 545$	1/2	1⁄4	21⁄2	31 1/2	1 7/8	1 1/2	131⁄2	111/2	3 1/8	27	41⁄2	143⁄4	131⁄2	1/4	1634	3⁄8	11/16	221⁄2	113%	-
N6303 N6304	675 735	1⁄2	1⁄4	21⁄2	35	17/8	2	155/16	13	3 %16	301/2	41/2	14¾	131⁄2	1⁄4	19	3⁄8	¹ 1⁄16	221/2	13 ¹ 1⁄16	
N6305 N6306	935 1030	3/8	5/16	3	40 1/8	2 1/8	2	16 7/16	141/8	3 %16	351/8	41/2	143/4	131⁄2	1/4	21 ³ /16	3⁄8	11/16	221/2	16 1⁄16	
N6307 N6308	1390 1520	3⁄8	5/16	4 1/4	46¾	2 1/8	3	19½	16¼	53/8	41 3⁄4	5	14¾	131⁄2	1⁄4	24 3/8	3⁄4	11/16	221/2	185/16	34-10x11/2
N6309	1600	3/8	5/16	4 1/4	49	21/8	3	191⁄2	161/4	55%	44	5	14¾	131/2	1/4	24 %	3⁄4	11/16	22 1/2	191/8	34-10x11/2
N6311 N6312	2360 2630	3⁄4	3⁄8	51/4	58	23/8	3	211/2	181/4	55/8	521/2	51⁄2	22	19	5.16	28 1/4	7⁄8	1	0	251/2	1-8x2

* High-thrust motors have oil-lubricated upper thrust and lower guide bearings, except Frames N6306 and smaller which have grease-lubricated guide bearings.

Normal-thrust motors have grease-lubricated lower thrust and upper guide bearings, Frames N6306 and smaller.

† Shaft not drilled and tapped for Frames N6306 and smaller.


For shipping weight of motor, add 15 per cent to the above net weights.

GENERAL 🋞 ELECTRIC

MOUNTING DIMENSIONS FOR CONSTANT- AND ADJUSTABLE-SPEED D-C MOTORS

Type CD, Frames 66 to 95 and 1126 to 1655

Two Sleeve or Ball Bearings, Open and Totally Enclosed, *Fan-cooled

			ROX I										Κ.,		DIM	ENSION	S IN IN	CHES		_				1	-				
	Base					LLEY										RINGS													
Frame	or Rail	See Motor	or 2	Pul- ley	Dia	Width Over-all	Width	Depth	A	В	D	Е	F	н		Sleeve	N	S	U	v	w	AL	AM	AO	ΑP	AR	AU	AX	AW
		NO	Rails	-											<u>M</u>	<u>M</u>												_	
$\begin{array}{c} 66 \\ 67 \end{array}$	324 326	$355 \\ 415$			$\begin{vmatrix} 6 \\ 8 \end{vmatrix}$	$5\frac{1}{2}$ $6\frac{3}{4}$	3/8 5/8	3/16 3/16	$15\frac{1}{4}$ $15\frac{1}{4}$	$12\frac{12}{14}$	8 8	$ \begin{array}{c} 6 \frac{1}{4} \\ 6 \frac{1}{4} \end{array} $		21/32 21/32 32/32	10 ⁵ /16 11 ¹ /16	10^{5}_{16} 11^{1}_{16}	5^{1}_{16} 5^{1}_{16}	$13\frac{14}{14}$ $14\frac{5}{8}$	15⁄8 15⁄8	4% 4%	3/16 3/16	$22\frac{7}{8}$ $22\frac{7}{8}$	$19\frac{1}{4}$ $20\frac{3}{4}$	8 8	=	$ 8\frac{1}{2} 9\frac{1}{4} $	3⁄4 3⁄4	$2\frac{1}{2}$	=
73 75	$ \begin{array}{c} 7 \\ 182 \end{array} $	$435 \\ 485$		$\frac{9}{15}$	7	$5\frac{1}{2}$ $6\frac{3}{4}$	5/8 5/8	3/16 3/16	$17\frac{1}{4}$ $17\frac{1}{4}$	$12\frac{1}{1}$	$9\frac{1}{4}$ $9\frac{1}{4}$	7 ½ 7 ½ 7 ½	$4\frac{3}{4}$ 5 $\frac{5}{8}$	²⁵ / ₃₂ ²⁵ / ₃₂	9^{3}_{16} 9^{11}_{16}	11 3/16 1 11 1/16	4 5/8 5 1/8	$^{+14}_{+157/16}$	1 5/8 1 5/8	37⁄8 45⁄8	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{24}{23}\frac{1}{8}$	$17\frac{1}{2}$ $17\frac{1}{2}$	$7\frac{3}{4}{6^{17}32}$	=	$\frac{7\frac{7}{8}}{8}$	7/8 3/4	3¼ 3¼	=
83 85	7 9½	$650 \\ 715$	$\begin{array}{c} 55 \\ 65 \end{array}$	$\frac{17}{28}$	8 10	73⁄4 73⁄4	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{4}$ $\frac{1}{4}$	$19\frac{3}{4}$ $19\frac{3}{4}$	13 14 ¼	$10\frac{1}{2}$ $10\frac{1}{2}$	85/8 85/8	5 55⁄8	²⁵ / ₃₂ ²⁵ / ₃₂	105/8 11	$12\frac{7}{13}$	$5\frac{7}{8}_{6^{1}\frac{1}{1}_{16}}$	†17½ †17%	$1\frac{7}{2}$	5 5/8 6 1/8	1/4 5/16	24 ½ 27 ½	$17\frac{1}{2}$ 19	73⁄4 85⁄8	=	71/8 85/8		3 ¼ 3 ¼	=
93 95	$\begin{smallmatrix}10\\10\end{smallmatrix}$	955 985	$120 \\ 120$	33 33	10	9¾	1/2	1⁄4	223/4	15	12	95⁄8	6	²⁵ /32	12 7/16	151/8	7 ⁷ ⁄16	†20	2 5⁄8	6 <i>7</i> /8	5/16	323⁄8	21 14	10 5%	_	9¾	1	3¾	-
1126S 1126	$\overline{41}$	$\begin{smallmatrix}1560\\1600\end{smallmatrix}$	425	80	13	15	1/2 5/8	1/4 5/16		18			7¾		$16\frac{1}{2}$ $17\frac{5}{8}$	$16\frac{1}{2}$ $17\frac{3}{8}$	4 81⁄8	2434	1%	$\frac{3\frac{1}{2}}{7\frac{5}{8}}$			25¾			12			31/2
1128S 1128	$\overline{41}$	$\frac{1600}{1640}$	425	80	13	15	1/2 5/8	1/4 5/16		19			8¼		17 17 <i>7</i> /8	17 17 ½	4 8 1/8	2514	17/8 25/8	3½ 7%		5	26¾			12 <mark>1⁄</mark> 2	9		$\overline{4}$
1129S 1129	$\overline{41}$	$\frac{-}{1715}$ 1755		80	13	15	1/2 5/8	1⁄4 5⁄16		19½			81⁄2		$17\frac{1}{14}$ 18 $\frac{1}{8}$	$17\frac{1}{4}$ $18\frac{1}{8}$	4 8 1/8	251/2	1 7⁄8 2 5⁄8	3½ 75/8			271/4			1234			4 1/4
1130S 1130	$\overline{41}$	$\begin{array}{c} 1655\\ 1695 \end{array}$		80	13	15	1/2 5/8	1⁄4 5⁄16		20			8¾		$17\frac{1}{18}$	$17\frac{1}{2}$ $18\frac{5}{8}$	4 81⁄8	2534	$1\frac{7}{8}$ $2\frac{5}{8}$	3½ 75%			273/4			13			$\frac{-}{4\frac{1}{2}}$
1131S 1131	41	$1815 \\ 1815$	425	80	13	15	1/2 5/8	1/4 5/16	251⁄2	201/2	14	113⁄4	9	1 ¹ ⁄16	1734 185⁄8	$17\frac{3}{4}$ $18\frac{5}{8}$	4 81⁄8	26	17/8 25/8	3½ 75%	1⁄4	36½	28 ¼	15¾	5	131/4	¹³ ⁄16	5	43/4
1133S 1133	41	$1955 \\ 1995$	$4\overline{25}$	80	13	15	1/2 5/8	1⁄4 5⁄16		21 1/2			9½		18¼ 19¼	18¼ 19½	4 81⁄8	261/2	178 25/8	31⁄2 75⁄8			29 ¼			13¾			51/4
1135S 1135	41	1930 1970	$4\overline{25}$	80	$\frac{-}{13}$	15	1/2 5/8	1⁄4 5⁄16		221⁄2			10		1834 195%	1834 195%	4 81⁄8	27	1 7/8 2 5/8	31⁄2 75⁄8			30 ¼			14 1⁄4			
1136S 1136	$\overline{41}$	2075	$4\overline{25}$	80	13	15	1⁄2 5⁄8	1/4 5/16		23			10¼		19 19 <u>7</u> %	19 19 <i>7</i> %	4 8 1⁄8	2714	17/8 25/8	3½ 75%			30¾			141⁄2			6
1137S 1137	$\overline{41}$	$\frac{2045}{2085}$	425	80	13	15	1/2 5/8	1/4 5/16		231⁄2			101/2		$19\frac{1}{4}$ 20 $\frac{1}{8}$	$19\frac{1}{4}$ 20 $\frac{1}{8}$	4 81⁄8	271/2	178 25/8	3½ 75/8			31 ¼			143⁄4			61/4
1138S 1138	41	2170	$4\overline{25}$	80	13	15	1/2 5/8	1/4 5/16		24			10¾		$19\frac{1}{2}$ $20\frac{5}{8}$	$19\frac{1}{2}$ $20\frac{5}{8}$	4 8½	2734	1 7⁄8 2 5⁄8	3½ 75%			31 3⁄4			15		[$\frac{1}{6\frac{1}{2}}$

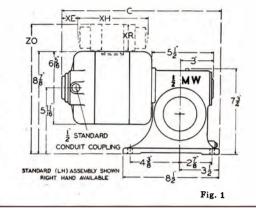
GENERAL 🎲 ELECTRIC

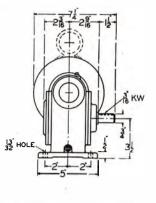
MOUNTING DIMENSIONS FOR CONSTANT- AND ADJUSTABLE-SPEED D-C MOTORS (Cont.)

Type CD, Frames 66 to 95 and 1126 to 1655 (Cont.)

Two Sleeve or Ball Bearings, Open and Totally Enclosed, *Fan-cooled (Cont.)

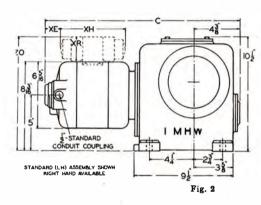
			ROX I			_	-	-	_	-			-		Di	mensior	ns in In	ches		-			_						_
Frame	Base or Rail	tor y‡	Base or	Pul-		LLEY		_	A	в	D	E	F	н	BEAT	RINGS Sleeve	N	s	U	v	w	AL	AM	AO	AP	AR	AU	AX	AW
	run	1. Y E	2 Rails	ley	Dia	Width Over-all	Width	Depth			2				M	M				_									
1235S 1235	42	$2295 \\ 2340$	430	100		17	3/8 3/4	⁵ /16 ³ /8		2235			10		1934 2034	19 ¾ 20 ¾	5 93%	291/8	2 3/8 3 1/8	41/2 91/8			30 1/4			14 1/4			53/4
1238S 1238	42	2450	430	100	14	17	3/8	5/16 3/8	27	24	15	1212	10¾	1 1/16	2012 2112	201/2 211/2	5 93⁄8	2978	2 3/8 3 1/8	41/2 91/8	1/4	38	31 3/4	16½	5¾	15	¹³ ⁄16	5	632
1239S 1239	$\overline{42}$	$\begin{array}{c} 2395\\ 2440 \end{array}$	430	100	14	17	3/8 3/4	5/16 3/8	2.	241⁄2	10	12/2	11	- /16	2034 2134	20 ³ ⁄4 21 ³ ⁄4	5 93%	30 1/8	2 % 3 1/8	41/2 91/8			32 1/4		• /4	151/4	/10		63/4
1242S 1242	42	$2555 \\ 2610$	430	100	$\frac{-}{14}$	17	3/8 3/4	5/16 3/8		26			113⁄4		211/2 221/2	$21\frac{12}{22\frac{1}{2}}$	5 9\$%	30 7/8	23/8 31/8	41⁄2 91⁄8			3334			16			732
1337S 1337	$\overline{43}$	$\frac{3150}{3205}$	435	170	18	19	3/8 3/4	⁵ /16 8/8		23 ½			101/2		21 1/8 21 3/8	21 1/8 21 3/8	51/2 10 3/8		23/8 33/8	5 9 <i>7</i> /8			31 1/4			143/4			61/4
1339S 1339	43	$3165 \\ 3220$	435	170	18	19	3/8 3/4	5/16 3/8	¢ =	24 <mark>½</mark>			11		21 % 22 ½	21 % 22 ½	$5\frac{1}{2}$ $10\frac{3}{8}$	3132	23/8 33/8	5 91⁄8			32 1/4			15!4			63/4
1341S 1341	43	$3290 \\ 3345$		170	18	19	3/8 3/4	⁵ /16 ³ /8	30	251⁄2	17	14	111/2	1 1/16	22 1/8 22 3/8	22 ½ 22 %	51/2 103/8	32	23/8 33/8	5 9 <i>3</i> /8	1⁄4	41	33 1/4	18	7¼	153/4	13/16	5	71/4
1344S 1344	43	$\begin{array}{r} 3410\\ 3465\end{array}$	435	$1\overline{70}$	18	19	3/8 3/4	5/16 3/8		27			12 1/4		22]/8 23 3/8	2278 233/8	51/2 103/8	323/4	23/8 33/8	5 97⁄8			343/4			16½			8
1345S 1345	43	$3555 \\ 3610$		170	18	19	3/8 3/4	⁵ /16 3/8		2775			121/2		23 1⁄8 23 3⁄8	23 1/8 23 3/8	5 ¹ ⁄2 10 ³ ⁄8	33	23/8 33/8	5 9 <i>7/</i> 8			351/4			163/4			81/4
1441S 1441	44	$4070 \\ 4155$	$\frac{-}{445}$	$2\overline{15}$	18	23	1 ³ ⁄4	3/8 1/2		25 ½			111/2		22 ⁷ / ₈ 23 ¹ / ₈	22 1/8 23 1/8	6 11 3 /8	341/2	21/8 31/8	51/2 113/8		2	33 1/4			153/4			71/4
1444S 1444	$\overline{44}$	$4205 \\ 4290$	 445	215	18	23	3 ⁄4 1	3/8 1/2	34	27	19	15 7/8	12 1/4	1 1/16	235/8 237/8	2338 2378	6 113⁄8	351/4	27/8 37/8	51/2 11 3/8	1/4	44 %	343/4	197/8	91/8	161/2	13/16	5 .	8
1445S 1445	44	4470		215	18	23	1 ⁸ ⁄4	3/8 1/2	01	271/2	10	1078	121/2	- /16	23 ½ 24 ½	23 1/8 24 1/8	6 113⁄8	351/2	27/8 37/8	51/2 11 %	/4	74	351/4	1.078	078	16¾	/16		81/4
1447S 1447	$\overline{44}$	$\begin{array}{r} 4350\\ 4435 \end{array}$		$2\overline{15}$	18	23	3 % 1	3/8 1/2		2812			13		24 % 24 %	24 ³ /8 24 ³ /8	6 11 3 /8	36	27/8 37/8	51/2 11 %			36 1/4			17 1/4			83/4
1 539S 1 539	$\frac{-}{45}$	5035 5150	460	315	22	2512	3⁄4 1	3/8 1/2		26			111/2		24 24 %	24 24 %	7 13%	37	33/8 43/8	6½ 12%			3334			153/4			71/4
1 543S 1 543	45	5435 	 460	315	22	251/2	$1^{\frac{8}{4}}$	3/8 1/2	6	28			121/2		25 25 %	25 25 %	7 13 %	38	3 3/8 4 3/8	6½ 12%			351/4			163/4			81/4
1546S 1546	$\overline{45}$	5610 5725	460	315	22	251/2	⁸ ⁄4 1	3/8 1/2		29 ½			13 ¼		25 ³ /4 26 ³ /8	25 % 26 ½	7 13 %	3834	3 3/8 4 3/8	6½ 12%			363/4			171/2			9
1549S 1549	$\overline{45}$	5795 5910	460	315	22	251/2	1 ⁸ ⁄4	3/8 1/2	37	31	21	17 1/4	14	1 5/16	261 <u>/</u> 2 267/8	261/2 263/8	7 13 %	391/2	3 3/8 4 3/8	6½ 12%	1⁄4	47 <u>} {</u>	38 1/4	21 1/4	10 ½	181/4	¹³ ⁄16	5	93/4
1550S 1550	45	6140	460	315	22	251/2	⁸ ⁄4	3/8 1/2		311/2			14 1/4		26 % 27 ½	26 ³ ⁄ ₄ 27 ¹ ⁄ ₈	7 13 3/8	3934	3 3/8 4 3/8	6½ 12¾			383/4			1812			10
1553S 1553	$\overline{45}$		 460	315	22	251/2	⁸ ⁄4	3/8 1/2	4	33			15		271/2 271/8	$27\frac{1}{2}$ $27\frac{1}{2}$	7 13 %	4012	3 3/8 4 3/8	61⁄2 123⁄8			40 1/4			19 1/4			103/4
1556S 1556	$\frac{-}{45}$		460	315	22	251⁄2	1 ³ ⁄4	3/8 1/2		341⁄2			15¾		28 1/4 28 3/8	$28\frac{1}{4}$ $28\frac{3}{8}$	7 133%	41 1/4	3 % 4 %	6½ 12%			41 3/4			20			111/2
1638S 1638	46	6525 6750	475	400	24	2912	1 1 ¼	1/2 3/8		25 ½			11 1/4		25 [%] 257/8	25 3/8 25 7/8	8 16 %	401/2	378 53/8	7½ 15%			323/4			151/2			7
1642S 1642	46	7130	475	400	24	2972	1 1 ¼	1/2 8/8		271/2			121/4		26 ³ ⁄8 26 7⁄8	26 3/8 26 7/8	8 16 %	41 1/2	31/8 53/8	7½ 15%			3434			161/2			8
1645S 1645	46	7355	475	400	$\overline{24}$	2912	1 1 ¼	1/2 5/8		29			13		27 1/8 27 3/8	27 1/8 27 3/8	8 163%	42 1/4	5 %	715 151/8			36 1/4			171/4	- î		83/4
1648S 1648	46	7575 7800	475	400	24	291⁄2	1 1 ¼	1/2 5/8	43	301/2	24	20	133⁄4	1 5/16	27 <i>1</i> /8 28 3/8	271/8 283/8	8 163%	43	378 53/8	71/2 157/8	1/4	53	373/4	24	131/4	18	13/16	5	935
1649S 1649	46	8180		400	24	291⁄2	1 1 ¼	1/2 5/8	10	31	21	20	14	1 /16	28 1⁄8 28 3⁄8	28 1/8 28 3/8	8 163⁄8	43 1/4	378 53/8	7½ 15%	/4	00	38 1/4	-	1074	18 1/4	/10		93/4
1650S 1650	$\overline{46}$	8600	475	400	24	2972	1 1 ¼	1/2		311/2			141/4		28	28 3/8 28 1/8	8 16 %	431/2	37/8 53/8	7½ 15%			38¾			181⁄2			10
1653S 1653	$\overline{46}$	8835	475	400	$\overline{\overline{24}}$	2972	1 1 ¼	1/2		33			15		29 ¹ /8 29 ³ /8	29 1/8 29 3/8	8 16 3⁄8	44 1/4	3% 53%	7½ 15%			401/4			191⁄4			103/4
1655S 1655	$\overline{46}$	9235	375	400	24	2972	1 1 ¼	1/2 3/8		34			151/2		29 ³ /8 30 ¹ /8	29% 30½	8 16 ³ /8	4434	378	7½ 15%			41 1/4			1934			11 1/4

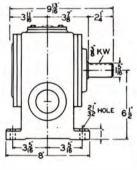

* For dimensions of totally enclosed, fan-cooled motors in frames larger than 95, refer to the Company.
† This dimension is for sleeve-bearing motors; ball-bearing motors are slightly shorter. Motors in Frames 1126 to 1655 are furnished with slide rails instead of bases.
‡ These weights are for open motors. For fan-cooled construction Frames 66 to 95, increase 7 to 14%. For shipping weights, add 15% to the net weights.
For complete dimensions and tolerances, ask for appropriate GEM print as listed on page 78.


GENERAL SELECTRIC

MOUNTING DIMENSIONS FOR F-HP PACIFIC, GENERAL ELECTRIC MOTORIZED, SPEED REDUCERS

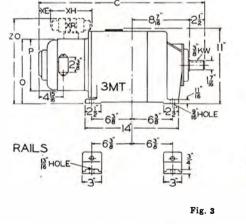
Motors—Type K, KH, KC, and BC Reducer—Type MW, Open, Horizontal Frames—½MW-42 to ½MW-47

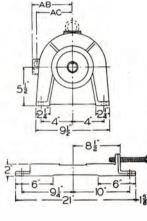

			1	Dimen	sions	in Inc	hes
Frame No.	Volts	Ship. Wt,			TYPE	KC ONL	.Y
110.	1	Lb	C	XE	хн	XR	zo
½ MW-42	$32 \\ 115 - 230$	60	14 13¾		-	-	-
⅓M W-43	$\begin{array}{r}110\\220-440\end{array}$	60	131/4	-	-	-	-
½ MW-44	$32\\115-230$	60	143/8	-		-	-
½ M W-45	$110 \\ 220 - 440$	60	1334	1 1/2	53/16	25/32	11 1/16
1⁄2 M W-46	115-230	60	141/8	-	-	-	_
1/2 M W-47	110	60	14 1/8	115/16	5 3/16	229/64	1111/16



Motors—Type K, KH, KC, and BC Reducer—Type MHW, Open, Horizontal Frames—1MHW-42 to 1MHW-47

				Dimer	nsions	in Incl	nes
Frame No.	Volts	Ship. Wt,			TYPE 1	KC ONL	Y
		Lb	C	XE	ХН	XR	zo
1 MH W-42	$32 \\ 115 - 230$	105	18¼ 18	_	_		-
1 MHW-43	$\begin{array}{r}110\\220-440\end{array}$	105	171/2	-	-	-	-
1 MHW-44	$32 \\ 115 - 230$	105	18%	-	-	_	-
1 MHW-45	$\begin{array}{r}110\\220-440\end{array}$	105 105	18	11/2	5 3/16	2 5/32	101/2
1 MHW-46	32 115-230	105	19 % 19 %	-		_	-
1 MHW-47	110	105	183/8	115/16	53/16	229/64	11





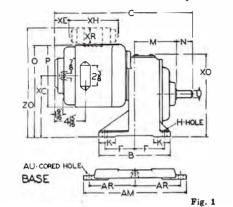
Motors—Type K, KC, and BC Reducer—Type MT, Open, Horizontal Frames—3MT-63 to 3MT-77

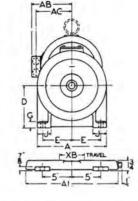
D		Wt,	D	imens	ions in	Inche	g
Frame No.	Volts	Ship.	с	0	P	AB	AC
3 M T-63	110-220-440	215	24 %	91/4	71/2	51/64	4 5/16
3 M T-66	115 or 230	215	2513/16	91/4	71/2	51/64	4 5/16
3MT-73	110-220-440	230	253/8	925/32	87/16	531/64	425/32
3 MT-74	115 or 230	230	29 %/16	925/32	87/16	531/64	425/32
3MT-77	110	230	267/8	925/32	87/16	531/64	425/32

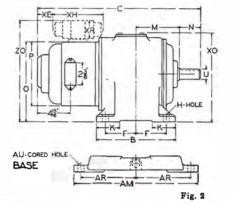
Frame No.	ZO	XE	хн	XR
3MT-63	133%	11/4	711/16	3 3/8
3MT-73	. 137/8	111/16	711/16	3 3/8
3MT-77	131/8	211/16	711/16	3 3/8

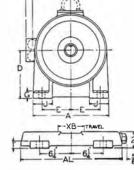
FRACTIONAL-HORSEPOWER-MOTOR FRAME SIZES

		Suno Spood -		MOTO	R TYPE			Suine Cound		MOTOR	TYPE	
1.77	Нp	Sync Speed,	ĸ.	КН	KC	вC	Нр	Sync Speed, - Rpm	К	КН	кс	BC
	1⁄6	1800	43	45	45	42	1/2	1800 1200	63		63	66
	1/4	1800	43	47	47	44 -			73			74
	1/8	1800	45		47	46	3⁄4	1800 1200	$73 \\ 204$		73	$\begin{array}{c} 74 \\ 204 \end{array}$


For complete dimensions and tolerances, ask for the appropriate GEM print listed on page 78.


GENERAL 🌑 ELECTRIÇ

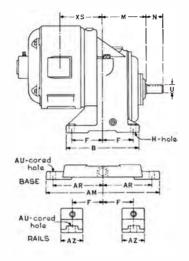

MOUNTING DIMENSIONS FOR F-HP PACIFIC, GENERAL ELECTRIC MOTORIZED, SPEED REDUCERS

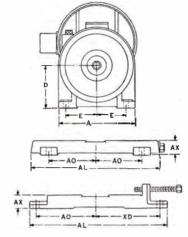

Motor—Types K, KH, KC, and BC. Reducer—Types MS and MR Frames ¹⁄₂ MS-42 to 1MS-77; 3MR-63 to 5MR77

Open, Horizontal For Gear, Chain, Belt, or Direct Connection

			APPI																I	limen	sions	in In	ches												
Frame			in		KEY	WAY	t th				С							1				10.1		1		[1	1			-	TYPE 1	KC ONL	Y
Frame No. †	Fig.	Base No.	Unit	Base	Width	Depth	Key Length	A	в	110, 220, 440, 550 Volts	32 Volts	115 or 230 Volts	D	Е	F	G	н	J	к	М	N	0	Р	U	AB	AC	AM	AR	XB △	xc	xo	XE	хн	XR	zo
MS-42	1	02	48	15	3/16	3/32	11/4	61/2	61/4		13%	131/2	31/2	23/4	2 5/8	9/16	13/32	11/4	11/2	311/16	11/2	85/16	6 5/16	5/8			101/2	41/2	1/2	55/32	8 5/8				
1/2 MS-43	1	02	46	15	3/16	3/32	11/4	61/2	61/4	13			31/2	23/4	2 5/8	9/16	13/32	11/4	11/2	311/16	11/2	85/16	6 5/16	5/8			101/2	41/2	1/2	5 5/32	83%	11/2	53/16	2 5/32	1021/32
1/2 MS-44	1	02	50	15	3/16	3/32	11/4	61/2	61/4		141/8	137/8	31/2	23/4	25%	9/16	13/32	11/4	11/2	311/16	11/2	85/16	6 5/16	5/8			1012	41/2	1/2	55/32	8 5/8				
2 MS-45	1	02	48	15	3/16	3/32	11/4	61/2	61/4	131/2			31/2	23/4	2 5/8	9,16	13/32	11/4	11/2	311/16	11/2	85/16	6 5/16	5/8			101/2	41/2	1/2	55/32	83/8	1 5%	53/16	2 5/32	1021/32
1/2 MS-46	1	02	53	15	3/16	3/32	11/4	61/2	61/4		المعددة	1415/16	31/2	23/4	2 5/8	9/16	13/32	11/4	11/2	311/16	11/2	85/16	6 5/16	5/8			101/2	41/2	1/2	5 5/32	83/8				
1/2 MS-47	1	02	52	15	3/16	3/32	11/4	61/2	61/4	133/8			31/2	23/4	2 5/8	9/16	13/32	11/4	11/2	311/16	11/2	85/16	6 5/16	5/8			101/2	41/2	1/2	55/32	8 3/8	113/16	53/16	239/64	111%
1 MS-63	1	204	80	20	3/16	3/32	11/2	81/4	73/4	16 5/16			41/4	31/2	31/4	5/8	17/32	17/8	21/2	45%	1 3/4	101/4	71/2	-	51/64		12	51/4	2	61/2	1034	21/4	415/16	2 5/8	1211/16
1 MS-66	1	204	85	20	3/16	3/32	11/2	81/4	73/4			171/4	41/4	31/2	31/4	5/8	17/32	17/8	21/2	45/8	13/4	101/4	71/2	7/8	51/64	4 5/16	12	51/4	2	61/2	103/4				
1 MS-73	1	204	100	20	3/16	3/32	11/2	81/4	73/4	173/8			41/4	31/2	31/4	5/8	17/32	17/8	21/2	45/8	13/4	103/4	87/16	7/8	531/64	425/32	12	51/4	2	61/2	1034	23/4	415/16	2 5/8	131/4
1 MS-74	1	204	104	20	3/16	\$/32	11/2	81/4	73/4			18	41/4	31/2	31⁄4	5/8	17/32	1 7/8	21/2	4 5/8	1 3/4	103/4	87/16	7/8	531/64	425/32	12	51/4	2	61/2	103/4				
1 MS-77	1	204	120	20	3/16	3/32	11/2	81/4	73/4	18 3/8			41/4	31/2	31/4	5/8	17/32	17/8	21/2	45/8	1 3/4	1013/32	87/16	7/8	531/64	425/32	12	51/4	2	61/2	103/4	121/32	711/16	3 3/8	14 5/32
3MR-63	2	254	95	28	1/4	1/8	2	91/2	91/2	1813/16			51/2	4	4 1/8	11/16	9/16	21/4	21/2	415/16	21/4	91/4	71/2	11/8	51/64	4 5/16	151/8	65/8	2		101/2	21/4	415/16	2 5/8	11 7/16
3MR-66	2	254	100	28	1/4	1/8	2	91/2	91/2	· · · · · ·		193/4	51/2	4	41/8	11/16	9/16	21/4	21/2	415/16	21/4	91/4	71/2	1 1/8	51/64	4 5/16	151/8	65%	2		101/2				
3MR-73	2	254	110	28	1/4	1/8	2	91/2	91/2	193/8		·····	51/2	4	4 1/8	11/16	9/16	21/4	21/2	415/16	21/4	93/4	87/16	1 1/8	531/64	425/32	151/8	6 5/8	2		101/2	23/4	415/16	2 3/8	121/4
3MR-74	2	254	115	28	1/4	1/8	2	91/2	91/2			201/2	51/2	4	4 1/8	11/16	9/16	21/4	21/2	415/16	21/4	93⁄4	87/16	11/2	531/64	425/32	151/8	6 5/8	2		1012				
5MR-73	2	254	170	Ž8	3/8	3/16	23/4	11	10	23 3/16			61/2	45%	41/4	3/4	11/16	234	21/2	711/16	3	1013/32	87/16	11/2	531/64	425/32	151/8	65/8	3		13	23/4	415/16	2 3/8	
5MR-74	2	254	175	28	3/8	3/16	23/4	11	10			2313/16	61/2	4 5/8	4 1/4	3⁄4	11/16	23/4	21/2	711/16	3	103/4	87/16	11/2	531/64	425/32	151/8	65/8	3		13				
5MR-77	2	254	180	28	5/8	3/16	23/4	11	10	18 5/8			61/2	4 5/8	41/4	3/4	11.16	23%	21/2	711/16	3	1013/32	87/16	11/2	531/64	425/32	151/8	65/8	3		13	121/32	711/16	3 5/8	

 $\triangle XB$ is total movement of unit on base or rails for tightening chain or belt. For complete dimensions and tolerances, ask for the appropriate GEM print listed on page 78. For shipping weights, add 15 per cent to above net weights. † Reducer frame numbers precede dash; motor frame numbers follow dash.


MOUNTING DIMENSIONS FOR PACIFIC, GENERAL ELECTRIC MOTORIZED, SPEED REDUCERS

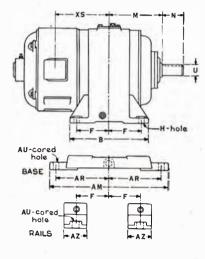

Motors: Types K and KG (2- and 3-phase) Frames 203 to 326, Open and Splashproof (Tri-Clad) Frames 364 to 504, Open (Not Tri-Clad)

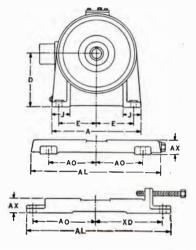
Ball Bearings For Gear, Chain, Belt, or Direct Drive

Reducers: Type MS

Frames 1MS*203 to 50MS*504

	Base	APPRO • WT I	X NET N LB									Din	iensi	ons in	Inche	s							
Frame No.	or Rail No.	+	Base or	KE'	YWAY	A	в	D	Е	F	н	м	N	U	AL	AM	AO	AR	AU	AX	xs	AZ	xD
	‡	Unit	Two Rails	Width	Depth		Б			r	п	M			AL	AM	AU	AR	AU	AA	~ ~ ~	AL	AD
1 MS*203 1 MS*204	204	110 115	20	3/15	3/32	81/4	73/4	41/4	31/2	3¼	17/32	45%	13/4	7/8	14	12	5	51/4	1/2	134	4 9/16 51/16		
2 MS*203 2 MS*204	225	$150 \\ 155$	23	1/4	1/8	10	93/4	6	4	33/4	²¹ / ₃₂	57/16	21/4	1 1/8	151/2	13	51/2	53/4	1/2	13/4	43/4 51/4		
2 M S*224 2 M S*225	225	165 180	23	1/4	1/8	10	93/4	6	4	33/4	²¹ /32	57/16	21/4	1 1/8	151/2	13	51/2	53/4	1/2	1 3/4	51/16 57/16	-	
5MS*224 5MS*225	284	$\begin{array}{c} 225\\ 230 \end{array}$	33	3/8	3/16	1212	12	6½	5	43⁄4	²⁵ /32	65/8	3	11/2	1934	163/8	7	71/2	5/8	2	$5^{3}_{59}_{16}$		
5MS*254 5MS*284	284	260 310	33	3/8	3/16	121/2	12	6½	5	43/4	25/32	65%	3	135	1934	163/8	7	71/2	5/8	2	55/8 515/16		
10MS*254 10MS*284	326	405 455	53	1⁄2	1/4	171/4	14	9	7 1/8	6	²⁹ / ₃₂	81/16	31/2	1 7/8	22 3/4	203/4	8	91/4	3/4	21/2	7 5/16 7 5/8		
10MS*324 10MS*326	326	490 525	53	1/2	1/4	171/4	14	9	71/8	6	29/32	81/16	312	17/8	223/4	203⁄4	8	91/4	3/4	21/2	81/16 813/16		
20MS*324 20MS*326	445	675 710	129	5/8	5/16	18	19	10	71/2	81/4	1 3/8	101/16	4	27/16	31 1/4	265%	11	12	3/8	3	715/16 811/16		
20MS*364 20MS*365	445	890 930	130	5/8	5/16	18	19	10	71/2	8¼	1 1/8	101/16	4	2 7/16	31 1/4	265%	11	12	3/8	3	97/16		
20 MS*404 20 MS*405	445	$\begin{array}{c}1020\\1060\end{array}$	130	5/8	5/16	18	19	10	71/2	8¼	1 1/8	101/16	4	27/16	311/4	265%	11	12	3/8	3	1011/16		
20MS*444 20MS*445	445	$\begin{array}{c}1160\\1220\end{array}$	130	5/8	5/16	18	19	10	71/2	81/4	1 1/8	101/16	4	27/16	31 1/4	265%	11	12	3/8	3	1113/16		
50MS*365 50MS*405	6	$\begin{array}{c}1400\\1500\end{array}$	160	7/8	7/16	26	24	121/2	10	101/2	1 5/8	12 %/16	5	3 7/16	41	-	181/2	-	1 1/16	31/2	105/8	5	20
50 MS*444 50 MS*445	6	$\begin{array}{c}1600\\1660\end{array}$	160	7/8	7/16	26	24	121/2	10	10 1⁄2	1 5/8	12 9/16	5	37/16	41	-	181/2	-	1 1/16	31⁄2	1234	5	20
50MS*504	6	1880	160	7/8	7/16	26	24	121/2	10	101/2	1 5/8	12 %/16	5	3 7/16	41	-	181/2	-	1 1/16	31/2	135/8	5	20


* The letter A, B, or C, denoting Class I, II, or III, motorized speed reducers respectively (see page 52), is omitted, since the dimensions of a given unit are the same, regardless of the classification.
+ The weights given above are for open units. Splashproof units will be somewhat heavier.
+ Numbers 204 to 445 are sliding bases. The No. 6's are rails.
For shipping weights, add 15 per cent to the above net weights.
For complete dimensions and tolerances, ask for the appropriate GEM print listed on page 78.



MOUNTING DIMENSIONS FOR PACIFIC, GENERAL ELECTRIC MOTORIZED, SPEED REDUCERS

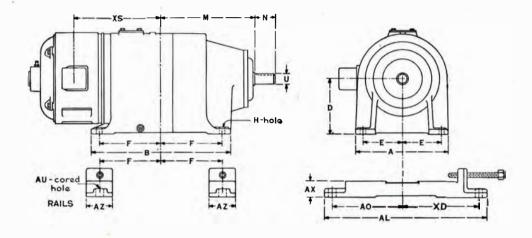
Motors: Types K and KG (2- and 3-phase) Frames 203 to 326, Open and Splashproof (Tri-Clad) Frames 364 to 455, Open (Not Tri-Clad) Reducers: Type MR Frames 3MR*203 to 50MR*445

Ball Bearings For Gear, Chain, Belt, or Direct Drive

	Base	APPRO	X NET									Dime	ensions	in Inch	es						
Frame	or Rails	WT		KEY	WAY												•	1			
No.	No. §	Unit †	Base	Width	Depth	A	В	D	Е	F	н	М	Ν	U	AL	AM	AO	AR	AU	AX	XS
3 MR*203 3 MR*204	254	$\begin{array}{c} - \\ 117 \\ 124 \end{array}$	28	1/4	1/8	91/2	91/2	51/2	4	41/8	9/16	415/16	21/4	1 1/8	1734	151/8	6¼	63%8	5/8	2	6¼ 6¾
5MR*203 5MR*204	254	$\begin{array}{r}163\\174\end{array}$	28	3/8	3/16	11	10	61/2	43/8	4¼	11/16	711/16	3	11/2	1734	151/8	6¼	63/8	5/8	2	6 %/1 7 1/1
5MR*224 5MR*225 5MR*254	254	179 192 229	28	3/8	3/16	11	10	612	43/8	41/4	11/16	711/16	3	11/2	1734	151%	6¼	63%	5/8	2	67/8 71/4 713/1
9MR*224 9MR*225 9MR*254	324	$324 \\ 337 \\ 364$	45	1/2	1/4	1534	12 3/8	9	6½	5¼	13/16	815/16	31⁄2	2 1/8	22 3⁄4	19¼	8	81/2	3/4	21/2	75/1 711/1 73/4
9MR*284 9MR*324 9MR*326	324	$417 \\ 466 \\ 503$	45	1/2	1/4	1534	12 3/8	9	6½	5¼	13/16	8 ¹⁵ /16	31/2	2 1/8	2234	19¼	8	8½	3⁄4	212	
15MR*254 15MR*284	444	915 967	125	3⁄4	3/8	22	171/2	12	9	7¼	¹⁵ /16	11 3/4	41/2	21/8	31 1/4	243/8	11	11	7∕8	3	11 3/8
15MR*324 15MR*326	444	$ \begin{array}{r} 1000 \\ 1030 \end{array} $	125	3/4	3/8	22	171/2	12	9	7¼	15/16	1134	41/2	2 7/8	31 1/4	245%	11	11	 ¾	3	$12\frac{1}{12}\frac{1}{8}$
35MR*326	505	1450	166	7/8	7/16	25	2132	14	11	9	1 1/8	14%	5	3 7/16	35	30	121/2	131⁄2	1	31⁄2	1334
15MR*364 15MR*365	444	$1200 \\ 1250$	125	3/4	3/8	22	171/2	12	9	7¼	15/16	1134	41/2	23/8	311/4	24 3/8	11	11	7∕8	3	131/4
15MR*405	444	1350	125	3/4	3/8	22	1732	12	9	71/4	15/16	113/4	41/2	21/8	311/4	243/8	11	11	7∕8	3	14
35MR*364 35MR*365	505	$1500 \\ 1550$	166	7⁄8	7/16	251/2	2112	14	11	9	1 1/8	143/8	5	3 7/16	35	30	121/2	131/2	1	31/2	14 1/8
35MR*405	505	1650	166	7/8	7/16	251/2	21 1/2	14	11	9	1 1/8	145/8	5	37/16	35	30	121/2	131/2	1	31/2	141/8
35MR*444 35MR*445	505	1750 1810	166	3/8	7/16	2532	2115	14	11	9	1 1/8	143%	5	3 7/16	35	30	121/2	131/2	1	312	16
50MR*405	\$8	3300	265	1	35	36	34	19	14	14	1 3/8	185/16	612	378	501/2		231/8		1 3/16	31/2	19 1/8
50 MR*444 50 MR*445	\$8	3400 3460	265	1	3/2	36	34	19	14	14	1 3/8	185/16	6½	378	501⁄2		23 1/8	·····	1 3/16	31⁄2	201/4

* The letter A, B, or C, denoting Class I, II or III, motorized speed reducers respectively (see page 52), is omitted, since the dimensions of a given unit are the same regardless of the classification.
* Weights given are for open units. Splashproof units are slightly heavier.
* The dimensions AZ and XD for No. 8 rails are 6 in. and 24% in. respectively.
* Numbers 254 to 505 are sliding bases. The No. 8's are rails.
* For shipping weights, add 15 per cent to the above net weights.
* For complete dimensions and tolerances, refer to the appropriate GEM print listed on page 78.

GENERAL BELECTRIC


MOUNTING DIMENSIONS FOR PACIFIC, GENERAL ELECTRIC MOTORIZED, SPEED REDUCERS

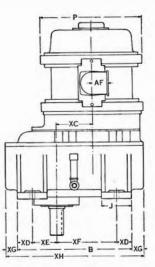
Motors: Types K and KG (2- and 3-phase) Frames 203 to 326, Open and Splashproof (Tri-Clad) Frames 364 to 365, Open and Splashproof (Not Tri-Clad)

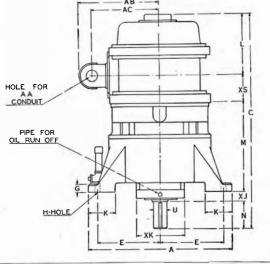
Ball Bearings For Gear, Chain, Belt, or Direct Drive

Reducers, Type MT

Frames 3MT*203 to 15MT*365

Frame			ROX								Dime	nsions	in Inch	es							-	
No.	Rail No.	NI WT	ET , LB	KEY	WAY	Key	A	в	D	Е	F	н	м	N	U	AL	AO	AU	AX	AZ	XD	xs
,		Unit	Rails	Width	Depth	Length	_														-	
3 M T*203 3 M T*204	2	$220 \\ 225$	35	3⁄8	3/16	21⁄4	91⁄2	14	5½	4	6 <mark>%</mark> 8	⁹ ⁄16	8 7.⁄16	21⁄2	1 7/16	21	9¼	13/16	2	3	10	8 % 9 1/1
5MT*203 5MT*204	2	295 300	35	1⁄2	1/4	31/4	11	1734	6½	43/8	8	13/16	111/16	31⁄2	2 3/16	21	9¼	13/16	2	3	10	$10^{5}_{10^{13}_{11}}$
5 M T *224 5 M T*225 5 M T*254	2	310 325 375	35	1/2	1/4	3¼	11	173/4	6½	45%	8	¹³ ⁄16	11 1/16	31⁄2	2 3/16	21	9¼	13/16	2	3	10	10 % 11 11 9/1
9MT*224 9MT*225	4	$\begin{array}{c} 515\\ 530\end{array}$	65	3⁄4	3⁄8	4¼	15	22	9	6½	93⁄4	15/16	141⁄2	4½	2 ¹⁵ /16	281⁄2	1234	¹ 5⁄16	21⁄2	4	133⁄4	11^{13}_{123}
9MT*254 9MT*284 9MT*324	4	570 630 680	65	3⁄4	3⁄8	4¼	15	22	9	6½	93⁄4	¹ 5⁄16	14 ½	41⁄2	215/16	28½	1234	¹ 5⁄16	21⁄2	4	1334	$12\frac{1}{4}$ $12\frac{9}{1}$ $14\frac{1}{2}$
5MT*284 5MT*324 5MT*326	6	$1465 \\ 1525 \\ 1550$	160	7⁄8	7/16	 43⁄4	22	281⁄2	12	9	123⁄4	1 ¹ ⁄16	19	5	31⁄2	41	18 ½	1 1/16	31⁄2	5	20	173/1 175/8 183/8
5 M T*364 5 M T*365	6	$\frac{1725}{1750}$	160	7⁄8	7/16	43⁄4	22	281⁄2	12	9	123⁄4	1 1/16	19	5	31⁄2	41	18 ½	1 ¹ /16	31⁄2	5	20	1834


* The letter A, B, or C denoting Class I, II or III speed reducers respectively (see page 52), is omitted, since the dimensions of a given unit are the same, regardless of the classification.
† The weights given above are for open units. splashproof units are slightly heavier. For shipping weights, add 15 per cent to above net weights. For complete dimensions and tolerances, ask for the appropriate GEM print listed on page 78.


GENERAL BELECTRIC

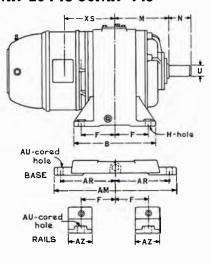
MOUNTING DIMENSIONS FOR PACIFIC, GENERAL ELECTRIC MOTORIZED, VERTICAL SPEED REDUCERS

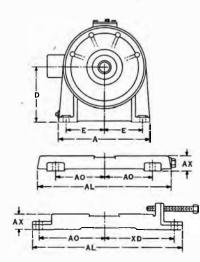
Motors—Types K, KF, and KG (2- and 3-phase) Reducers—Type SV, Open, Vertical Frames 1SV*204 to 20SV*405

For Thrust Loads **Two Ball Bearings**

Frame No.	1		Dimensions in Inches														
	Approx Net Wt, Lb	KEYWAY		Key	А	В	c	E	G	н	J	к	L	м	N		
		Width	Depth	Length								-			_		
1SV*204	110	3/16	3/32	11/2	914	8	183/16	4	11/16	9/16	21/4	214	61/4	613/16	1 3/4		
2SV*204	150	1/4	1/8	2	11 1/2	91/2	1934	5	13/16	11/16	21/2	21/2	61/4	734	21/4		
2SV*224 2SV*225	170	14	3/8	2	111/2	91⁄2	20 5/16 21 1/16	5	13/16	11/16	21/2	21/2	634 71/8	8	2 14		
2SV*225	230	1/4	1/8	2	111/2	91/2	2234	5	13/16	11/16	21/2	21/2	81/4	81/2	21/4		
25V*204	160	3/8	3/16	23/4	1414	12	2111/16	61/4	15/16	13/16	3	23/4	61/4	815/16	3		
5SV*204 5SV*224 5SV*225	200 210	3/8	3/16	234	1414	12	$22\frac{1}{22^{15}}$	6¼	15/16	13/16	3	23/4	634 71/8	9 3/16	3		
5SV*254	245	3/8	3/16	234	141/4	12	2411/16	61/4	15/16	13/16	3	23/4	81/4	911/16	3		
10SV*254	375	1/2	1/4	3 3/8	17	155%	261/2	71/2	1 1/8	15/16	31/2	31/2	81/4	103/4	31/		
103V*234 10SV*284	425	1/2	1/4	33/8	17	155%	285/16	71/2	1 1/8	15/16	31/2	31/2	93/8	111/8	31/		
10SV*324	475	1/2	3/4	33/8	17	15%	291/2 311/2	71/2	1 1/8	15/16	31⁄2	31⁄2	10½ 11½	11 3/8	31/2		
10SV*326 20SV*324 20SV*326	660 710	5/8	5/16	334	211/2	19	33 35	91⁄2	1 1/4	1 3/8	4	4	10 ½ 11 ½	14 3/8	4		
20SV*364 20SV*365	840	5/8	5/16	334	211/2	19	36 7/16	91⁄2	114	1 1/8	4	4	1113/16	1434	4		
205 V*405	1000	5/8	5/16	33/4	211/2	19	3813/16	91/2	11/4	1 1/8	4	4	1314	1415/16	4		

							DIMENS	SIONS IN I	NCHES						_
Frame No.	P	U	AA	AB	AC	AF	xc	XD	XE	XF	XG	хн	ХJ	ХК	xs
1SV*204	99/16	7/8	3/4	75%	61/2	13%	21/4	1 1/8	1 3/4	4	1/2	9	5/8	31/2	23/4
2SV*204	99/16	11/8	3/4	75/8	61/2	1 7/8	3	11/4	. 2	5	1	111/2	3/4	4	23/4
2SV*224 2SV*225	11	1 3/8	3/4	811/32	7 7/32	1 7/8	3	1 1/4	2	5	1	111/2	3⁄4	4	2 %/1 215/1
25v*254	12 7/16	11/8	1	97/8	87/16	21/4	3	11/4	2	5	1	111/2	%		3
5Sv*204	99/16	11/2	3/4	75%	61/2	1 1/8	4	11/2	21/2	61/2	11/4	141/2	3/4	51/2	23/4
5SV*224 5SV*225	11 ,	1 1/2	3/4	811/32	7 7/32	1 3⁄8	4	11/2	21⁄2	61⁄2	134	141/2	34	51/2	2 %/1 2 ¹⁵ /1
5Sv*254	12 7/16	11/2	1	97/8	87/16	21/4	4	11/2	21/2	61/2	11/4	141/2	*4 .	51/2	3
10SV*254	12 7/16	1 7/8	1	97/8	87/16	21/4	5.6	13/4	31/4	87/8	1 5/8	187/8		51/2	3
10SV*284	14	1 7/8	1	1021 32	97/32	21/4	5.6	13/4	31/4	81/8	1 5/8	187/8	1	51/2	3 5/1
10SV*324 10SV*326	151/2	17/8	1 1/4 1 1/2	11^{31}_{32} 12^{19}_{32}	10^{17}_{32} 10^{31}_{32}	25/8 215/16	5.6	1 3/4	334	87⁄8	15%	1878	1	51/2	31/2 41/2
20SV*324 20SV*326	151/2	2 7/16	11/4	1131_{32} 1219_{32}	10^{17}_{32} 10^{31}_{32}	25/8 215/16	7	2	4	11	21⁄4	231⁄2	1	61/2	31/2 41/2
20SV *364 20SV *365	1738	2 7/16	11/2	131/2	113/4	2 3/8	7	2	4	11	21⁄4	231/2	1	61/2	4 7/8
20SV*405	19 3/8	2 %/16	2	141/8	13	31/2	7	2	4	11	21/4	231/2	1	63/2	55/8


* The letter A, B, or C, denoting Class I, II, or III, motorized speed reducers respectively (see page 52), is omitted, since the dimensions of a given unit are the same, regardless of the classification. For shipping weights, add 15 per cent to the above net weights. For complete dimensions and tolerances, ask for the appropriate GEM print listed on page 78.


GENERAL S ELECTRIC

MOUNTING DIMENSIONS FOR PACIFIC, GENERAL ELECTRIC MOTORIZED, SPEED REDUCERS

Motors: Types K and KG (2- and 3-phase) Frame 204 to 224, Totally Enclosed Frame 225 to 445, Totally Enclosed, Fan-cooled Reducers, Type MR Frames 3MR*204 to 50MR*445

Ball Bearings For Gear, Chain, Belt, or Direct Drive

	Base	APPRO	X NET									Dime	nsions	in Inch	es						
Frame	or Rails		LB	KE	YWAY	1						1		1	1	1					1
No.	No. ‡	Unit	Base	Width	Depth	A	В	D	E	F	н	M	N	U	AL	AM	AO	AR	AU	AX	xs
†3 MR*204 †3 MR*224	254	$\frac{120}{140}$	28	1/4	1/8	91⁄2	91⁄2	51/2	4	4 1/8	9/16	415/16	21/4	1 1/8	1734	151/8	6¼	65/8	5/8	2	71/1
†5MR*204 †5MR*224	254	170 185	28	3/8	3/16	11	10	61/2	4 5/8	41/4	11/16	711/16	3	1 1/2	1734	15 1/8	61/4	6 5/8	5⁄8	2	7 5/8 7 3/16
5MR*225 5MR*254	254	290 350	2	3/8	3/16	11	10	61/2	45%	41/4	11/16	711/16	3	11/2	1734	151/8	6¼	65%	5/8	2	91/10 91/2
29MR*224 9MR*225	324	$\begin{array}{c} 330\\ 385 \end{array}$	45	1/2	1⁄4	1534	125%	9	61⁄2	5¼	13/16	815/16	31/2	2 1/8	22 3/4	191⁄4	8	815	3/4	21/2	75/8 91/2
9 MR*254 9 MR*284	324	$\begin{array}{r} 430\\ 500 \end{array}$	45	3/2	34	153/4	125/8	9	61/2	51/4	13/16	815/16	31/2	2 1/8	22 3/4	1914	8	81⁄2	3⁄4	21/2	97/16 101/4
9MR*324 9MR*326	324	570 630	45	1/2	1/4	153/4	12 5/8	9	6½	51/4	13/16	815/16	31⁄2	2 1/8	22 3⁄4	191⁄4	8	81/2	3⁄4	21/2	117% 127%
15MR*284 15MR*324 15MR*326	444	1050 1080 1160	125	3/4	5/8	22	171⁄2	12	9	7¼	15/16	1134	41/2	23%	3114	245/8	11	11	3/8	3	$13\frac{1}{18}\\13\frac{1}{4}\\14\frac{1}{4}$
35MR*326	505	1580	166	7/8	7/16	251/2	21 1/2	14	11	9	1 1/8	145/8	5	3 7/16	35	30	121/2	131⁄2	1	31⁄2	151%
15MR*364 15MR*365	444	$\frac{1410}{1460}$	125	3/4	5/8	22	171⁄2	12	9	71/4	15/16	113/4	41⁄2	23%	311/4	245%	11	11	7∕8	3	$13\frac{3}{14}$ $14\frac{1}{4}$
15MR*405	444	1660	125	3/4	5/8	22	171/2	12	9	7 1/4	15/16	11 3⁄4	41⁄2	23%	311/4	245/8	11	11	3⁄8	3	151/4
35MR*364 35MR*365	505	1850 1900	166	7/8	7/16	251/2	211/2	14	11	9	1 1/8	145/8	5	3 7/16	35	30	1212	131⁄2	1	31/2	$14\frac{5}{8}$ $15\frac{1}{8}$
35MR*405	505	2100	166	3/8	7/16	251/2	211/2	14	11	9	1 1/8	145/8	5	37/16	35	30	121/2	131⁄2	1	31/2	161%
35MR*444 35MR*445	505	$\begin{array}{c} 2300\\ 2400 \end{array}$	166	3⁄8	7/16	251/2	2112	14	11	9	1 1%	145/8	5	37/16	35	30	121/2	1312	1	31/2	17 18
50MR*405	§8	3700	265	1	1/2	36	34	19	14	14	1 3/8	185/16	6½	31/8	501/2		$23\frac{1}{8}$		1 3/15	31⁄2	201/8
50 MR*444 50 MR*445	§8	3900 4000	265	1	1/2	36	34	19	14	14	1 3%	18 5/16	6½	37/8	501/2		23 1/8	·	1 3/16	31⁄2	2018 2118

* The letter A, B, or C denoting Class I, II, or III motorized speed reducers respectively (see page 52) is omitted, since the dimensions of a given unit is the same, regardless of the classification.
† Units with Frame 204 and 224 motors are totally enclosed.
† Numbers 254 to 505 are sliding bases. The No. 8's are rails.
§ The dimensions AZ and XD for No. 8 rail are 6 in. and 24% in. respectively.
For shipping weights, add 15 per cent to the above net weights.
For complete dimensions and tolerances, ask for the appropriate GEM print listed on page 78.

GENERAL 🛞 ELECTRIC

HOW TO SELECT AND APPLY MOTORS

THE correct selection and application of a motor involves a great many factors affecting the installation, operation, and subsequent servicing of the motor. The selection is determined in whole or in part by the user or certain intermediaries, such as the manufacturers of motor-equipped devices, based on known facts and calculations, field tests, and close study of the processes and driven machines. While this form cannot include many special problems and conditions, it is presented as a general

guide to the conditions most commonly encountered in motor application.

MOTOR-APPLICATION GUIDE FORM POWER SUPPLY

I. Voltage

The supply voltage must be known in order to select proper motors and control. If the voltage is sustained at less than 90 per cent or more than 110 per cent of the nameplate voltage, special motors and control may be required. Larger motors, built to order, will usually be designed for the exact voltage to be maintained.

The accompanying tables indicate the preferred maximum and minimum horsepower limits for the different distribution voltages.

Approximately 90 per cent of the single-phase supply systems in the range of 100 to 125 volts are now either 115 or 120 volts.

208 volts is the common 3-phase supply voltage for 4-wire networks. Induction motors of 220-volt design will operate satisfactorily at 208 volts, although with modified operating characteristics.

Voltage	Minimum Hp	Maximum Hp				
	A-c, 1-phase					
$\begin{array}{c} 110 - 115 - 120 \\ 220 - 230 - 240 \\ 440 - 550 \end{array}$	None None 5	$1\frac{1}{2}$ 10 10				
	A-c, 2- and 3-phase					
$\begin{array}{c} 110 - 115 - 120\\ 220 - 230 - 240\\ 440 - 550\\ 2200\\ 4000\\ 6600 \end{array}$	None None None 40 75 400	15 200 500 None None None				
1	Direct-current	÷				
115 230 550–600	None None ½	30 200 None				

Reasonable Limits

II. Phases

1. Three-phase supply most desirable, but only single-phase is offered for most residential and rural districts.

2. Two-phase power supply is found only in a few scattered areas; therefore 2-phase motors are not generally available in stock.

3. Two-winding multispeed motors are difficult to wind for two-phase; therefore transformation to allow three-phase motors is recommended.

4. If change of direction of rotation of driven machine would be disastrous, power system should be

GENERAL 🍘 ELECTRIC

checked to determine likelihood of phase reversal; may necessitate phase-failure relays.

III. Frequency

1. 60-cycle systems predominate; 50-cycle systems in southern California and few isolated systems; 50cycle systems common in foreign countries.

2. 60-cycle induction motors usually suitable for 50-cycle operation at same voltage, with modified characteristics.

3. 40- and 25-cycle systems isolated and relatively small, so stock motors are not generally available.

4. Higher frequencies obtainable for special highspeed-motor applications, by use of induction frequency converters or alternators.

IV. A-c Versus D-c System

For most applications, a-c supply is satisfactory, since suitable performance can usually be obtained with a-c motors and control.

Where special characteristics, such as extra-wide speed range or severe accelerating or reversing duty, are involved, conversion by means of motor-generator sets, rectifiers, and in special cases, converters, may be justified.

V. Power Rates

1. *Energy charge*—This may affect choice of motors and control, as efficiencies vary widely, particularly when speed adjustment is involved.

2. Power-factor clause

A. Many rate schedules incorporate a powerfactor clause, adjusting the rate according to power factor; others involve penalty or bonus if power factor is, for example, below 80 per cent or above 90 per cent lagging.

B. Capacitors or synchronous motors may reduce power bill by improving power factor.

C. Synchronous motor operating at full load and rated excitation delivers to the power system leading kva equal to

$$\frac{0.746 \times \text{hp rating}}{\text{Eff} \times \text{p f}} \sqrt{1 - (\text{p f})^2}$$

(At partial loads, and rated excitation, more leading kva is supplied.)

3. Demand charge—Most rate schedules have a demand charge giving a rate based on maximum demand in a given period of time, as well as energy consumed. Choice of motor may smooth out demand and lower the rate.

VI. Voltage Regulation

1. Effect on motors and control—The voltage regulation of the supply should be known in order to select motors which will deliver sufficient torque, even with the probable drop in voltage, to start and carry the load. All induction-motor torques and synchronousmotor starting torque and pull-in torque vary as the voltage squared.

2. Effect of motors and control on supply system

A. Starting currents

(a) On pure power circuits, high starting current may cause dips in voltage, affecting other apparatus (see VI, 1 and VII, 1).

(b) On combined light and power lines, a drop of about 2 per cent from high motor-starting current may cause objectionable light flicker. Drop of 6 per cent is sometimes permissible in case of infrequent starting (2 or 3 starts per day).

(c) Starting current can be varied through motor design or use of different control, or both. In general, a-c motors having squirrel-cage secondary have highest starting currents, while phase-wound secondary types have lowest current.

(d) Power companies usually limit the starting current which may be drawn by motors. Two types of rules are common, one type specifying the allowable number of amperes for each horsepower rating. The more recent "Increment" type of rules is based on the "capacity to serve" a given installation. Usually, the total current is not limited, but must be taken in increments or steps, the magnitude of each step being determined by the total connected load. If the lockedrotor current of the motor exceeds the allowable increment, a suitable reduced-voltage starter will be required.

B. Current pulsation

(a) Loads drawing pulsating currents from the line may cause corresponding line-voltage variations. Frequencies of pulsation in the range of 250 to 600 per minute may cause objectionable light flicker, even if the voltage variation is as small as $\frac{1}{2}$ of 1 per cent.

(b) Usual limit for current pulsation is 66 per cent of motor full-load current, although the system regulation may require a limit of 30 or 40 per cent to avoid light flicker.

VII. Continuity of Power

1. Dips in voltage from switching or other line disturbances may necessitate time-delay undervoltage protection, and, in case of synchronous motors, hightorque designs and resynchronizing control. Sustained low voltage may necessitate higher-torque motors. A-c motor starting torques vary as the voltage squared.

2. If continuity of power is indispensable, standby units or automatic transfer to another power source may be required.

VIII. Short-circuit Current

The point of connection to the power system may necessitate the use of high-interrupting-capacity controllers or additional fuses or breakers of high interrupting capacity to handle the probable high shortcircuit current.

IX. Voltage Surges

1. Motors supplied from high-voltage overhead

power lines may be subjected to high surges in voltage, produced by lightning, switching, etc., and may require special insulation and possibly external protective equipment.

2. D-c motors on trolley circuits may be subjected momentarily to excessive voltages which also may require special designs or external protective equipment.

THE DRIVEN MACHINE

I. Mechanical Arrangement

1. Horizontal or vertical shaft—Arrangement of the driven machine usually determines whether horizontal or vertical motor is needed. Horizontal motors are more generally available and less expensive; most grease-lubricated ball-bearing motors will operate in either position. Fractional-hp waste-packed sleevebearing motors are satisfactory for short periods of vertical operation where no thrust is involved.

2. Tilted shaft—If momentary, this will require special construction of bearing housings for oil-ringlubricated sleeve-bearing motors, to avoid loss of lubricant. In case of long periods of tilted operation, bearings suitable for end thrust may be necessary. Ball-bearing motors with grease lubrication are suitable for tilted operation.

3. Inverted operation and rolling

A. Where the driven machine requires mounting the motor with the feet above or to one side of the shaft, rearrangement of the end shields of most motors makes them suitable.

B. If the driven machine requires operation of the motor at a changing angle from the horizontal (shaft remaining horizontal) of more than 10 or 12 degrees, ball-bearing motors will usually be required. Within this angle, sleeve-bearing motors with modified oil gages are applicable.

4. Portable machines—A portable type of driven machine may require motors and control of greater compactness and less weight than standard, and may necessitate special bearing construction for ring-oiled sleeve-bearing motors.

5. Method of connection

A. Direct connection should always be considered where required speed coincides with available motor speed. Maintenance, efficiency, power factor, space, and initial cost will determine the choice between direct connection and other methods. When direct connection is possible, "built-in" construction (where parts of the driven machine are common with, and complete, the motor structure, such as shaft or bearings) should be considered.

B. Belt drive—Diameters and widths of pulleys or sheaves and center distances are factors in determining motor-bearing pressures and shaft deflection. The table on page 98 shows limits for two-bearing motors and limits of good practice for belting. Flat belts should not run at greater speeds than about 5000 feet per minute. Flat belting of vertical-shaft motors is difficult.

C. Chain drive—Very conservative limits are shown in the table on page 98. The chain manufacturer should be consulted when higher horsepower and speed ratings are involved, so that the best drive from the standpoints of quietness and economy of operation may be selected.

98

Horsepower Limits for Two-bearing Motors (Belt Drive)

Motor Speed, Rpm	Flat-belt Drive, Max Hp	V-belt Drive, Max Hp
1700-1800	40	60; ball-brg, 75
1440 - 1500 1150 - 1200	40 75	60; ball-brg, 75 100; ball-brg, 125
850-900	125	200
680-720	200	300
560-600	200	300
500-514	150	300
440 - 450	150	250

Horsepower Limits for Two-bearing Motors (Chain Drive)

Motor Speed, Rpm	Maximum Hp
$\begin{array}{c} 1700-1800\\ 1440-1500\\ 1150-1200\\ 850-900\\ 720-750\end{array}$	5 10 25 50 75

D. Gear drive—Compactness and arrangement of drive often indicate "gear-motors," obtainable in a variety of mechanical constructions with speed ratios of 3 to 1 upwards and generally limited to about 75 hp maximum.

Where the pinion of ordinary spur gearing is mounted on the motor shaft, two-bearing motors should be limited to horsepower ratings shown in "chain-drive" table above.

Maximum pitch-line speed with steel pinions is about 1300 feet per minute.

6. Space limitations—Space limitations may affect the choice of motor and require (a) built-in construction, (b) gear-motor, (c) forced ventilation using an external blower, or (d) small frame with Class B insulation permitting higher temperature rise.

II. Speeds, Speed Range and Regulation

1. *Speeds*—The operating speed, or a number of speeds, or the speed range of a driven machine will influence the type of motor and control.

2. Speed range—Where more than one speed or a range of speeds is required, one of the following types may be applicable, depending upon the power supply and the speed range required. Those marked (*) have relatively wide speed regulation, which may make them unsuitable for some loads.

Туре	Speed Range								
Single-phase, A-c									
*A. Brush-shifting repulsion motor	2½:1								
*B. Capacitor-motor with tapped winding	2:1								
C. Multispeed capacitor-motor	2 or 3 fixed speeds								
Polyphase, A	A-c								
A. Multispeed squirrel-cage	2, 3, or 4 fixed speeds								
*B. Wound-rotor motor	2:1								
*C. 2-speed wound-rotor motor	4:1								
D. Brush-shifting shunt motor	4:1								
*E. Brush-shifting series motor	3:1								
F. Squirrel-cage motors with variable frequency supply	Very wide range								
G. Speed Variator	Very wide range								

Types and Speed Ranges

GENERAL 🍘 ELECTRIC

Types and Speed Ranges (Cont)

Туре	Speed Range							
Direct-current								
A. Shunt-wound standard "constant- speed" motor with field control	2:1 in some cases							
B. D-c motor with armature control	Wide							
C. Adjustable-speed motor	From 3:1 to 6:1							
D. Shunt motor with adjustable volt- age supply	Very wide							

3. Speed regulation—The maximum speed regulation (variation in speed with load) allowable by the driven machine may vary from zero to a high percentage. In case of zero speed regulation, synchronous motors are required. Series-type motors have inherently wider speed regulation than shunt (and squirrelcage) types.

III. Synchronized Operation

Some driven machines have to operate in synchronism with other machines, necessitating synchronous motors or Selsyn equipment.

IV. Direction of Rotation and Reversing

The driven machine may operate in one direction only or may be of the reversible type. Most types of motors can be ordered for reversing operation, using a suitable controller. If the driven machine will be damaged by operation in the wrong direction, phasereversal relays or reversing protection switches may be required.

V. Hp Requirement

The horsepower required by the driven machine determines the motor rating. Where the load varies with time, a horsepower vs. time curve will permit determining the peak horsepower required and the calculation of the root-mean-square (rms) hp indicating the proper motor rating from a heating standpoint. In case of extremely large variations in load or where shutdown, accelerating, or decelerating periods constitute a large portion of the cycle, the rms horsepower may not give a true indication of the equivalent continuous load, and the motor manufacturer should be consulted.

Where the load is maintained at a constant value for an extended period (varying from 15 minutes to 2 hr, depending on the size), the horsepower rating required will usually not be less than this constant value, regardless of other parts of the cycle.

If the driven machine is to operate at more than one speed, the horsepower required at each speed must be determined.

VI. Torques

The torque required to operate the driven machine at every moment between initial breakaway and final shutdown is important in determining the type of motor. A torque-speed curve is desirable and sometimes essential.

1. Starting torque—The starting torque or breakaway torque required by the driven machine may be as low as 10 per cent, as in the case of medium-size centrif-

ugal pumps, or as high as 225 to 250 per cent of fullload torque, as in the case of a loaded reciprocating two-cylinder compressor. The breakaway torque may vary greatly at different times because of frequency of start, temperature changes, type and amount of lubricant, etc. The motor torque available at the shaft must be well above the torque required by the driven machine, taking into consideration these variables as well as the possibility of low voltage and the type of starter used.

2. Acceleration-The torque required after breakaway for acceleration to full speed varies with different driven machines, remaining at a rather high value throughout acceleration for such machines as loaded compressors and plunger pumps. The torque delivered by the motor must at all points up to full speed be in excess of the torque required by the driven machine. The greater this excess torque, the faster will be the acceleration. The approximate time required for acceleration from rest to full speed =

 $\frac{rpm \times WR^2}{T \times 308}$ (in seconds)

where rpm = full-load speed in revolutions per min T = torque = average ft-lb available for acceleration

 $WR^2 = lb$ -ft squared (inertia) of rotating parts

If the time to accelerate is greater than about 20 seconds, special motors or starters may be required to avoid overheating.

Running torque—The running torque is determined by the horsepower and speed of the driven machine, and at any given point the torque in lb-ft $5250 \times hp$

speed in rpm

The peak horsepower determines the maximum torque required by the driven machine. The motor must have a breakdown, or maximum running, torque in excess of this figure in order to avoid stalling. Certain driven machines, like reciprocating compressors, have load torques which pulsate periodically. To prevent excessive pulsation in the line current of the motor, proper flywheel effect (WR²) must be provided either in the motor or the driven machine. Where synchronous motors are used, the flywheel effect must be made such that the natural frequency of the motor does not approximate the frequency of any impulses in the load torque. Natural frequency in cycles per minute

 $\sqrt{\frac{1}{WR^2}}$ where WR^2 =weight in 1b \times rpm

(radius of gyration in $ft)^2$ (motor and load), rpm =speed in revolutions per minute of motor, f = linefrequency, Pr=synchronizing power of motor in kilowatts per electrical radian.

VII. Inertia (WR²) of Driven Machine

The inertia or flywheel effect (WR²) of the rotating parts of the driven machine affect the accelerating time and, therefore, the heating of motors and control, particularly where reversing duty or frequent starting is involved. (See above paragraph VI, 2 on Acceleration.)

In case synchronous motors are applied, the WR² must be known, since the pull-in torque required of this motor varies approximately as the square root of the total WR^2 (motor and load).

The WR² of a rotating member of the driven machine which operates at a different speed from that of the motor may be converted to an equivalent value at the motor shaft by multiplying by

$$\left(\frac{\text{rpm of rotating member}}{\text{rpm of motor}}\right)^{2}$$

VIII. Thrust

The driven machine may impose an axial thrust on the motor bearings. This is particularly true of such machines as propeller-type fans and deep-well pumps.

Ball bearings are useful in taking thrust, and standard ball-bearing motors may often furnish sufficient thrust capacity. Extremely heavy thrusts may require special plate-type oil-lubricated bearings.

IX. Balance

Certain driven machines, such as precision grinders, require motors which are specially balanced to give very small amplitudes of vibration. This is necessary to insure high quality of the finished product.

X. End Play

Certain driven machines require motors with limited or zero end play and may necessitate the use of motors with preloaded ball bearings or sleeve bearings with end-play-limiting devices.

XI. Frequency of Starting

The frequency of starting the driven machine affects the motor and control by increasing their heating, particularly where accelerating time is prolonged by high WR² and high load torques. In general, driven machines starting more than 4 to 6 times per hour may require special motors and control.

XII. Deceleration

Some driven machines must be decelerated quickly and will require control for dynamic braking of synchronous motors and direct-current motors or perhaps plugging of induction motors.

XIII. Operating Schedule

Where the driven machine operates for a large number of hours per year, motors with higher efficiency may often be justified, even at higher prices. Where fractional-horsepower motors are involved, higherefficiency "long-annual-service" designs are available for application to machines operating for more than 1000 hr per year.

XIV. Method of Control

Magnetic controllers may be required to permit remote operation or automatic operation of the driven machine in response to temperature or pressure variation, level changes, etc.

SURROUNDING CONDITIONS

I. Ambient Temperature

Normal ambient temperature is assumed to be not more than 40 C. For ambient temperatures exceeding 40 C, Class A insulated motors with lower temperature rise may be used as long as the total temperature (ambient plus rise) does not exceed 90 C for open motors and 95 C for enclosed motors. These limits may

An ambient temperature lower than about 0 C (32 F) may necessitate a change to lighter lubricant.

II. Altitude

No change in design is considered necessary for most electric machines for altitudes not exceeding 3300 ft above sea level. For higher altitudes, the temperature rise of electric machinery generally will increase approximately 1 per cent for each 330 ft increase in altitude above 3300 ft.

III. Surrounding Atmospheres

1. *Excessive moisture*—Driven machines in atmospheres filled with steam or excessive moisture may necessitate special-insulation low-voltage designs, and/or enclosed motors and control.

2. Corrosive or solvent atmospheres—Where corrosive or solvent atmospheres harmful to insulation are involved, totally enclosed or enclosed ventilated equipment is preferable, although open motors with special insulation may, in some cases, be sufficient.

3. *Explosive atmospheres*—Explosive atmospheres of both gaseous and dusty nature are classified by the National Electrical Code as follows:

Class I, Group A, atmospheres containing acetylene.

- Class I, Group B, atmospheres containing hydrogen or gases or vapors of equivalent hazard, such as manufactured gas.
- Class I, Group C, atmospheres containing ethylether vapor.
- Class I, Group D, atmospheres containing gasoline, petroleum, naphtha, alcohols, acetone, lacquersolvent vapors, and natural gas.
- Class II, Group E, atmospheres containing metal dust.
- Class II, Group F, atmospheres containing carbon black, coal or coke dust.
- Class II, Group G, atmospheres containing grain dust.

Local inspection authorities will usually determine the degree of hazard involved for a given installation, Group A being the most hazardous of the first class, and Group E the most hazardous of the second class.

Explosion-proof motors and control, utilizing the wide-flange principle, are available in generally used ratings for Class I, Group D, locations. Alternatives are enclosures filled with inert gas, or pipe-ventilated equipment. Apparatus for Groups A, B, and C require special designs, not generally available.

Special approved dust-tight motors and control are available in most ratings for Class II, Group G, dust locations, with alternative of pipe-ventilated equipment. Atmospheres of the more hazardous Group E and F dust conditions may require special dust-tight designs (not generally available) or pipe-ventilated equipment. 4. *Dusty atmospheres*—Dusty atmospheres (not explosive) of an abrasive or conducting nature usually necessitate the use of dust-tight enclosed apparatus.

As an alternative, pipe-ventilated equipment may be used, and in some cases, open motors with special insulation may suffice.

Where lint is present, such as in parts of textile mills, standard screenless open-type or enclosed nonventilated motors are preferable.

5. Outdoor conditions—Outdoor application usually necessitates total enclosure for protection against rain and snow. A change in lubricant with seasonal temperature changes may be necessary. Splashproof or protected-type motors should usually be restricted to low voltage and mild climate. Special weather-resisting finishes are necessary in all cases, and periodic painting by the user with weather-resisting paint is advisable.

IV. Water

Where operation for long periods under water is required, special enclosed equipment, with counter air pressure to prevent the entrance of water, is usually necessary.

For occasional flooding or submersion, extremely tight totally enclosed nonventilated motors equipped with stuffing boxes may suffice.

Where "hosing down" or splashing of water is involved, splashproof motors will usually meet all but extreme conditions, the latter requiring enclosed motors.

V. Quietness

Installations in residences and in public buildings, such as theaters, hospitals, and schools, may require the use of quiet motors and sound-isolating bases. In many cases, special building layout and construction may be needed to insure the necessary degree of quietness.

VI. Codes, Standards, Ordinances

Motors and control must conform to local and national standards, such as shown below, in order to (a) permit connection of power, (b) satisfy safety and fire requirements, and (c) permit lowest insurance rates.

A. NEMA standards which recommend certain mounting dimensions for induction motors and, in general, minimum performance characteristics for all types of motors and control.

B. *AIEE standards* which specify temperature limits for insulation materials and prescribe the methods of rating and testing apparatus.

C. National Electrical Code which is the general guide of inspectors in determining the acceptability of enclosures, protection, and installation of motors.

D. *State laws* which stress safety and reduction of fire hazards.

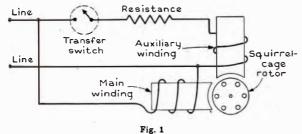
E. *City ordinances* which may specify particular construction considered necessary locally to avoid fires and accidents.

GENERAL 🏀 ELECTRIC

HOW TO SELECT MOTORS

MOTORS-ELECTRICAL TYPES AND CHARACTERISTICS

THE preceding guide form outlined many of the fundamental considerations involved in determining the type of motor best suited to a given job. The various mechanical constructions mentioned are described in previous sections of this catalog. The electrical characteristics, however, have not thus far been outlined. The following pages give a rather comprehensive over-all view of the different electrical types and characteristics. Included are curves which show the relationship of speed, torque, and current for the different types. These data will help you in selecting the motor best suited to meet the conditions determined by checking the guide form.

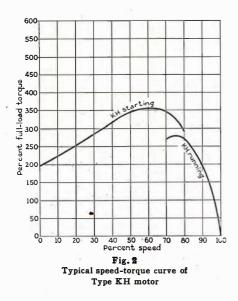

The following different electrical types of motors are described:Single-phase motorsDirect-current motorsPolyphase motorsSynchronous motors

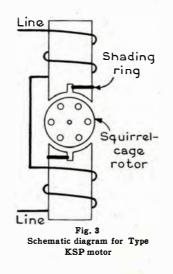
ELECTRICAL TYPES AND CHARACTERISTICS OF SINGLE-PHASE MOTORS

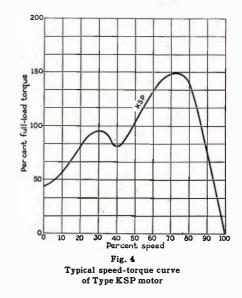
The single-phase motor was one of the earliest designs of alternating-current motors developed. It has been perfected throughout the years from the original repulsion type into many improved types, such as the modern split-phase motor and the capacitor-motor.

The principal uses of single-phase motors are domestic in character—clocks, appliances, etc. Industry also uses them to a large extent on single-phase feeder lines and on lighting circuits—for operating power tools, fans, blowers, heating and air conditioning units, etc.

A description of the important electrical types follows.

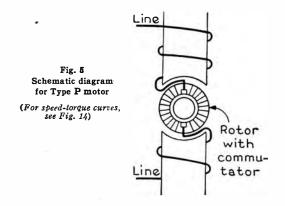

Schematic diagram for Type KH motor


TYPE KH SPLIT-PHASE MOTORS

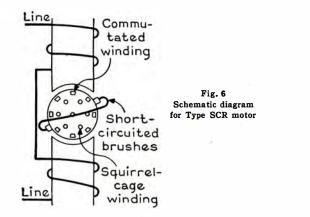

This motor is one of the most useful fractionalhorsepower types. It employs a squirrel-cage rotor for constant-speed operation. It has a starting winding of high resistance, which is physically displaced in the stator from the main winding. This displacement, plus the electrical phase displacement produced by the relative electrical resistance values in the two windings, creates starting ability similar to that of a polyphase motor. A centrifugal switch transfers the motor from the starting to the running condition during operation. A typical speed-torque curve is shown in Fig. 2.

TYPE KSP SHADED-POLE MOTORS

Where the power requirements of the drive are small, up to 10 or 15 watts—i.e., instruments, toys, hair dryers, small fans, etc.—this motor is economical to select. It obtains its starting ability by a short-circuited ring embedded off center in the pole fan. This ring obtains an induced field, delayed in magnetic timing in relation to the main field, to produce a starting torque. A typical speed-torque curve of these motors is shown in Fig. 4.



GENERAL 🛞 ELECTRIC

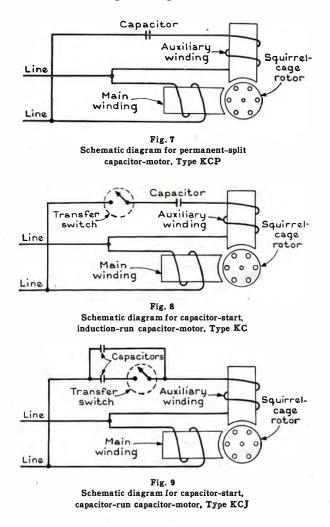

TYPE P SERIES, VARYING-SPEED UNIVERSAL MOTORS

The universal motor is designed for use on either alternating or direct current. It is of the series-wound type, that is, it is provided with a field winding on the stator, which is connected in series with a commutating winding on the rotor. Full-load speeds generally range from 5000 to 10,000 rpm with no-load speeds from 12,000 to 18,000 rpm. Typical applications are portable tools, office appliances, electric cleaners, kitchen appliances, etc.

TYPE SCR REPULSION-INDUCTION MOTORS

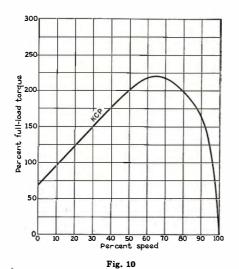
In addition to a single-phase stator winding, the repulsion-induction motor employs two rotor windings, one a cast squirrel-cage and the other a wirewound repulsion winding terminating on a commutator. The commutator brushes are short-circuited. Currents induced in the short-circuited winding produce a field which acts with the main field to produce starting torque, and to give repulsion characteristic, similar to those of a series motor. The torque produced is a result of the characteristics of the repulsion and squirrel-cage windings. Near synchronism, the squirrel-cage winding predominates in its effect, and the motor runs as an induction motor.

TYPES KCP, KC, AND KCJ CAPACITOR-MOTORS

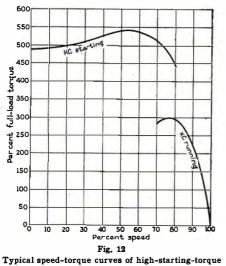

The capacitor-motor obtains its starting torque from a rotating magnetic field produced by two stator windings physically displaced. The main winding is connected directly across the line, while the auxiliary, or starting, winding is connected to the line through one or more units of series capacitors. Thus, the current in each winding will be out-of-phase electrically. The simplest type, mechanically, is the low-torque, permanent-split capacitor-motor, Type KCP. A capacitor is permanently connected in series with the auxiliary winding. The capacitor is selected to give quiet operation and good operating efficiency, and the starting torque is suitable for direct-connected drives requiring low starting torque, *i.e.* fan, blowers, certain types of centrifugal pumps, etc. This type of motor can be arranged for adjustable-varying speed by use of a tapped winding or autotransformer regulator.

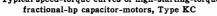
Higher starting torques are obtainable in two lines— "normal-starting-torque," Type KC (integral-hp sizes only, as Type KH motors are used for moderate torque in fractional-hp sizes) and "high-startingtorque," Type KCJ (Type KC in fractional-hp sizes).

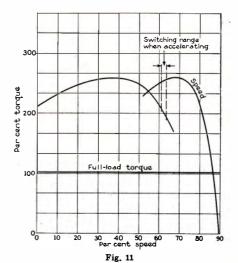
The size of capacitor and the electrical balance of the two windings determine the starting ability. Both capacitor-start, induction-run, and capacitor-start, capacitor-run, designs are used, depending on the size and torque required.


In the "induction-run" design, the capacitor and auxiliary winding are switched out completely at 70 per cent speed during starting by a centrifugal mechanism and a switch or voltage relay.

In the "capacitor-run" design, there are two capacitors. One of these is switched out during starting, leaving the other capacitor and the auxiliary winding in the circuit during running.




GENERAL 🛞 ELECTRIC


Speed-torque Curves of Single-phase Motors

Typical speed-torque curve of permanent-split low-starting-torque capacitor-motor, Type KCP

Typical speed-torque curve of normal-starting-torque capacitor-motor, Type KC (integral-hp sizes)

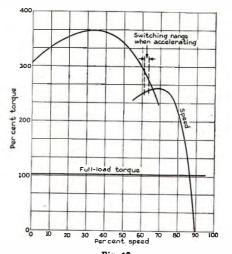


Fig. 13 Typical speed-torque curves of high-starting torque integral-hp capacitor-motors, Type KCJ

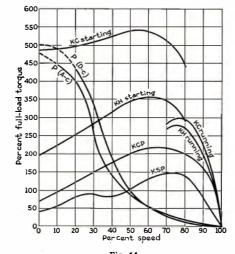


Fig. 14 A comparison of typical speed-torque curves of fractional-horsepower single-phase motors

GENERAL 🎲 ELECTRIC

ELECTRICAL TYPES AND CHARACTERISTICS OF POLYPHASE MOTORS

With the invention of the induction motor by Tesla in 1888, there became available both wound-rotor and ordinary squirrel-cage types. The limited capacity of the early supply systems forced the extensive use of wound-rotor motors. As a-c systems grew in capacity, the squirrel-cage motor came into greater use, but pending the development of the technique of special squirrel-cage designs, many intermediate types of wound-rotor motors came into use for a limited period. Among them were the wound-rotor motor with manually operated collector-short-circuiting mechanism, the wound-rotor motor with internal resistances and handoperated short-circuiting device, and later the woundrotor motor with internal resistances automatically short-circuited in steps by a centrifugal mechanism.

With the advent of different types of squirrel-cage motors, practically all of these intermediate types passed out of the picture because of their susceptibility to abuse by operators and their sensitiveness to voltage variation. Today, the requirements for integralhorsepower polyphase motors are rather well covered by three types of squirrel-cage motors (two of them being special-purpose machines) and the wound-rotor motor. Of course, devices for these motors are playing an increasingly important part in their proper application in industry.

WOUND-ROTOR MOTORS

Curves on Fig. 1 indicate the speed-torque, speedcurrent characteristics of the wound-rotor motor (Type M) with rings short-circuited and full voltage applied. These are merely reference curves, inasmuch as the wound-rotor motor is practically never started with rings short-circuited, because of the uncertain value of initial starting torque under this condition, and

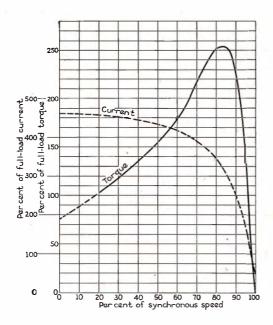


Fig. 1 Typical speed-torque and speed-current curves of Type M motor, for short-circuited rotor condition

GENERAL (28) ELECTRIC

because of the high starting current. Even with low values of secondary resistance (20 per cent or less), the torque at zero speed will vary appreciably with the position of the rotor, and with no external resistance in the secondary circuit (with rings short-circuited), the starting torque may actually be zero.

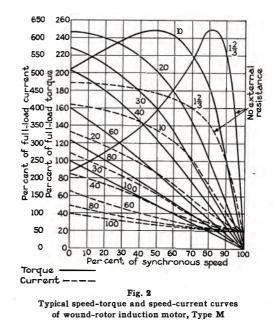


Fig. 2 shows the various speed-torque curves and corresponding speed-current curves obtainable with a wound-rotor motor using different values of external secondary resistance. The numbers on the curves indicate the secondary (rotor) circuit resistance in per cent of the value required to give full-load torque at standstill.

SQUIRREL-CAGE MOTORS

The squirrel-cage motor is highly dependable, reliable, and economical. General Elecrtic builds three basic types of squirrel-cage motors in the moderate sizes listed in this catalog. These types are the:

Normal-starting-torque, low-starting-current, Type K High-starting-torque, low-starting-current, Type KG High-starting-torque, high-slip, Type KR.

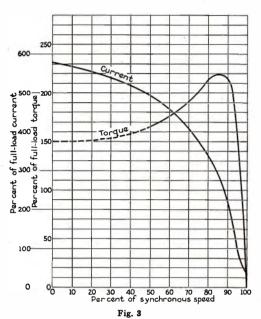
Normal-torque, Low-starting-current Type K (Code F—in Sizes Larger Than 15 Hp)

In order to meet the increasing demand for motors acceptable for full-voltage starting, the new Tri-Clad motors, in the general-purpose normal-torque types, have been designed with low starting current and with starting and running characteristics which make them applicable wherever previous Types K and KF motors have been used. The type letter K is used throughout for normal-torque motors, but is supplemented by a code letter stamped on the nameplate indicating, in terms of locked-rotor kva per horsepower, the lowcurrent design now available as standard in Tri-Clad motors.

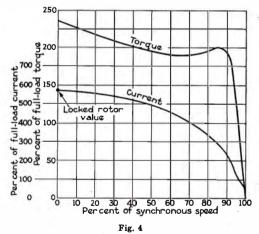
The starting currents of this new line make these motors acceptable for full-voltage starting to many power companies throughout the country, including such companies as:

Brooklyn Edison Co.

Commonwealth Edison Co., Chicago


Consolidated Gas, Electric Light and Power Co., Baltimore (some restrictions)

Hartford (Conn.) Electric Light Co.

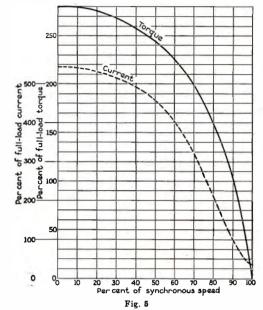

New York Edison Co.

Low Angeles Bureau of Light, Dept. of Water and Power

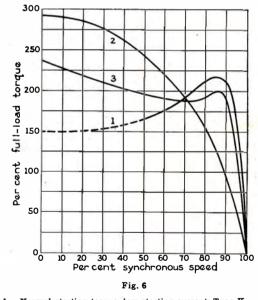
This is the most popular type of squirrel-cage motor for general-purpose applications. Fig. 3 shows typical speed-torque and speed-current curves of this motor.

Normal-starting-torque, low-starting-current squirrel-cage motor, Type K

High-starting-torque, low-starting-current squirrel-cage motor, Type KG

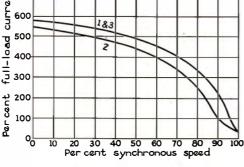

High-starting-torque, Low-starting-current Motor, Type KG

This motor was developed principally for automatic compressor applications where high starting torque with magnetic control and full-voltage starting was desired. Fig. 4 shows typical torque and current characteristics of this type of motor.


The Type KG motor has the famous Valv-amp rotor, an original G-E development.

High-starting-torque, High-slip Motor, Type KR

This motor has high starting torque and high running slip, obtained largely by an increase in the resistance of the rotor winding. Its high starting torque is utilized in applications like winches, capstans, etc., where high starting torque is needed, but where fullspeed running time is short. This motor is also used, because of its high slip, for punch-press and similar applications where flywheels are involved. Fig. 5 shows typical torque and current characteristics of this motor.


High-starting-torque, high-slip squirrel-cage motor, Type KR

- 1. Normal-starting-torque, low-starting-current, Type K
- 2. High-starting-torque, high-slip, Type KR
- 3. High-starting-torque, low-starting-current, Type KG

General Comparison of Types

Fig. 6 shows typical speed-torque curves for the three general types of squirrel-cage motors.

Similarly, Fig. 7 shows typical current curves for the

- Fig. 7 Speed-current curves for squirrel-cage motors
- 1. Normal-starting-torque, low-starting-current, Type K
- 2. High-starting-torque, high-slip, Type KR
- 3. High-starting-torque, low-starting-current, Type KG

HEATING

Open Motors

All open, continuously rated, 25-, 30-, 40-, and 60cycle polyphase induction motors, when operated at rated voltage and frequency, will carry full load continuously without exceeding 40 C rise on the coil windings, cores, and mechanical parts in contact with or adjacent to the insulation.

This temperature rise applies to Class A insulation and is based on an ambient temperature (temperature of the cooling medium surrounding the motor) not exceeding 40 C, and an altitude not greater than 1000meters (3300 feet) above sea level.

Open, continuously rated, 40 C rise, 60-cycle induction motors will operate continuously on 50 cycles at rated load and voltage without exceeding 50 C rise.

Splashproof and Dripproof Motors

Standard splashproof and dripproof motors, when operated at rated voltage and frequency, will carry full load continuously without exceeding 50 C rise under standard conditions of temperature and altitude.

Totally Enclosed and Totally Enclosed, Fan-cooled Motors

All totally enclosed, nonventilated, and totally enclosed, fan-cooled, continuously rated motors will carry full load continuously without exceeding 55 C rise under standard conditions of temperature and altitude.

SERVICE FACTOR

Open Motors

All open, continuously rated, 40 C rise polyphase induction motors, (except Type KR), when operated at rated voltage and frequency, will carry continuously 1.15 times their rated load, with possible slight differences in efficiency and power factor from those at rated load.

Totally Enclosed; Totally Enclosed, Fan-cooled; Splashproof; and Dripproof Motors

Because of the restricted ventilation and higher temperature rise at which these motors operate, the above service factor does not apply.

GENERAL S ELECTRIC

RATED SPEED

The rated full-load speed is an approximate value, but will always equal or exceed the published value, except in the case of wound-rotor motors where the speed is affected by the resistance of the secondary cables and control, and except in the case of high-slip Type KR motors for which average speed is shown. If a specific value of full-load speed is required, refer to the nearest G-E office.

ALLOWABLE VARIATION FROM RATED FREQUENCY AND VOLTAGE

1. All polyphase induction motors will operate successfully at rated load and voltage with frequencies not more than 5 per cent above or below the rated frequency, but not necessarily in accordance with the standards established for operation at normal rating.

2. All motors will operate successfully at rated load and frequency with voltage not more than 10 per cent above or below rated voltage, but not necessarily in accordance with the standards established for operation at normal rating.

3. All motors will operate successfully at rated load with combined variation in voltage and frequency not more than 10 per cent above or below the rating, provided the limits of variation given in paragraphs (1) and (2) are not exceeded, but not necessarily in accordance with the standards established for operation at normal rating.

EFFICIENCIES

The efficiencies for polyphase induction motors take into consideration the stray-load losses and are determined in accordance with the AIEE Test Code and ASA Standards.

The efficiencies of vertical ball-bearing motors, when the motors are operating with no-thrust load, are the same as those of the corresponding horizontal motors of the same rating, type, and frame size.

If extra load is supported by the motor bearings; for example, the weight and thrust of the impeller of a direct-connected centrifugal pump; suitable allowance must be made for the additional bearing losses when calculating the over-all efficiency of the unit.

Data from the ball-bearing manufacturers indicate this loss to be approximately 0.0075 hp per 100 rpm per 1000-lb-thrust load.

Example

Wanted 75 hp, 1800 rpm with 1500-lb additional thrust load. Full-load speed 1775 rpm. $0.0075 \times 17.75 \times 1.5 = 0.1997$ hp additional loss. No-thrust efficiency =91%.

 $\frac{75 \text{ hp}}{0.01} = 82.5 \text{ hp input.}$

75 hp 82.5-hp+0.1997 hp =90.7%

STARTING TORQUES

Normal-starting-torque, Normal-starting-current, and Normal-torque, Low-starting-current Motors

The starting torque of normal-starting-torque, normal-starting-current, and normal-starting-torque, low-starting-current, 25- and 60-cycle, general-purpose, polyphase squirrel-cage induction motors with rated voltage and frequency applied at the instant of starting,

will not be less than the following percentage of full-load torque for belted applications:

For 2 p	oles—150%]	- f f 11 1 d	For 10 poles—120%	6 6 11 1 1
For 41	150% (For 12 poles 115%	
	ooles—135% 🖍	torque	For 14 poles—110%	torque
For 8r	oles—125% 丿		For 16 poles-105%	-

NOTE.—Motors above the two-bearing belted range, listed for direct connection only, will have not less than 100 per cent starting torque. These motors are used principally for driving centrifugal pumps, fans, and blowers, and the starting torque is ample for such applications.

High-starting-torque, Low-starting-current, Continuous-rated Motors

The starting torque of high-torque, low-startingcurrent motors, 4, 6, and 8 poles, will be approximately 250 per cent of full-load torque for those ratings built in Frames 225 to 326 inclusive. Larger ratings, 4, 6, and 8 poles, up to 100 hp, will have approximately 200 per cent of full-load torque.

Nine-per-cent slip, Continuous-rated, Open, 40 C Rise Motors

High-slip (7 to 11 per cent), relatively low-startingcurrent, 4-, 6-, and 8-pole, squirrel-cage induction motors will have a minimum starting torque of 270 per cent in Frames 204 to 326, and 300 per cent in Frames 364 and larger.

Wound-rotor, Continuous-rated, 40 C Motors

The starting torque of a wound-rotor induction motor depends upon the value of the external starting resistance. A starting torque approximately equal to the breakdown torque of the motor can be obtained by using the proper value of starting resistance. Starting resistors normally furnished with wound-rotor motors are designed to give 150 per cent torque at standstill on the first point of the controller. With the controller in this position, the motor will draw approximately 150 per cent current from the line.

30- and 40-cycle, Open, Continuous-rated, 40 C Rise Motors

Motors for operation on 30 and 40 cycles will have approximately the same percentage of starting torque as the 25- and 60-cycle motors of the same horsepower, speed, and type.

STARTING CURRENTS

Newly designed Type K motors, former Type KF, and all Type KG motors will, in general, have starting currents not greater than the values shown below.

Rated	Amperes	Rated	Amperes		
Horsepower	at 220 Volts	Horsepower	at 220 Volts		
1	27	20	290		
1½	37	25	365		
2	47	30	435		
3	60	40	580		
5	90	50	725		
7 ½	120	60	87 0		
10 15	150 220	75	1085		

The current drawn from the line by a motor when started with a compensator, for various taps will be as follows: On 80-per-cent tap of the compensator, the current drawn from the line will be 64 per cent of the locked-rotor current; on the 65-per-cent tap, the current drawn from the line will be 42 per cent of the locked-rotor current; on the 50-per-cent tap, the current taken from the line will be 25 per cent of the lockedrotor current; as given for any particular motor.

ALTITUDE

Standard motors are designed to operate in altitudes up to 1000 meters (3300 feet) at rated load, voltage, and frequency without exceeding the temperature rise stamped on nameplate.

When it is desired to operate such motors in higher altitudes (see Note below), the temperature rise in degrees C can be determined by the following formula:

Temperature rise at specified altitude = $\frac{T}{1.00 - \frac{A - 3300}{330 \times 100}}$

Where T = Temperature rise in degrees C at sea level

A = Required altitude in feet.

Note.—No correction in temperature rise is made for altitudes less than 1000 meters (3300 feet).

General Effect of Voltage and Frequency Variation on General-purpose Induction-motor Characteristics

 $\blacksquare = Increase \qquad \blacktriangle = Decrease$

						=In	crease	A =	Decrea	se						
	-	Starting and	Syn-		Full-		EFFICIE	NCY	POV	VER FAC	TOR	Full-		Tem- pera-	Maxi-	Mag- netic
_		Maximum Running Torque	chro- nous Speed	ed Slip Speed	% Full- load Slip Speed		3⁄4 Load	1/2 Load	Full Load	₹ Load	1/2 Load	load Current	Starting Current	ture Rise, Full Load	mum Overload Capacity	Noise, No Load in Par- ticular
	120% Voltage	4 4%	No change	▲ 30%	1 .5%	Small	↓ ½ to 2 points	7 to 20 points	5 to 15 points	10 to 30 points	15 to 40 points	▲ 11%	25%	▲ 5 to 6 C	■ 44%	Notice- able
Voltage Varia-	110% Voltage	21%	No change	▲ 17%	1%	1	Prac- tically no change	1 to 2 points	A 3 points	▲ 4 points	5 to 6 points	▲ 7%	10 to 12%	▲ 3 to 4 C	1 21%	Slight
tion	Function of Voltage	(Voltage) ²	Con- stant	1 (Voltage) ²	(Syn speed slip)	-	-	-	-		-	-	Voltage	-	(Voltage) ²	
	90% Voltage	▲ 19%	No change	23%	132%	▲ 2 points	Prac- tically no change	1 to 2 points	1 point	2 to 3 points	4 to 5 points	11%	▲ 10 to 12%	6 to 7 C	▲ 19%	▲ Slight
	105% Fre- quency	10%	5%	Practically no change	5%	Slight	Slight	Slight	Slight	Slight	Slight	Slight	5 to 6%	Slight	Slight	Slight
Fre- quency Varia- tion	Func- tion of Fre- quency	1 (Frequency) ²	Frequen- cy	_	(Syn speed slip)	-	-	_	-	_	_		1 Frequency			_
	95% Fre- quency	11%	5%	Practi- cally no change	5%	Slight	Slight	Slight	Slight	Slight	Slight	Slight	5 to 6%	Slight	Slight	Slight

NOTE: This table shows general effects, which will vary somewhat for specific ratings.

GENERAL 🏀 ELECTRIC

ELECTRICAL TYPES AND CHARACTERISTICS OF DIRECT-CURRENT MOTORS

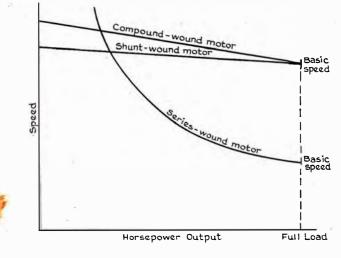
Direct-current motors were the earliest form of electric-power equipment. However, the simplicity of the induction motor and the advantages gained by a-c distribution eventually led to the use of a-c motors in the majority of applications.

However, the high standards of performance required in many modern industrial applications can be obtained more readily with d-c drives.

The chief advantages of d-c motors are as follows:

- **1** Adjustable speed
- 2. Speeds not limited to synchronous zones
- 3. Great flexibility of speed-torque characteristics
- 4. Ease and simplicity of control

The various electrical types of direct-current motors that General Electric can supply to meet modern industrial applications are described on the following pages.


TYPES OF WINDINGS

Shunt-wound Motors

Compared with other types of d-c motors, shuntwound motors, when connected to a constant supply voltage and with fixed field excitation, operate at approximately constant speed, regardless of load. There is some drop in speed from no load to full load. This drop may vary from 10 to 15 per cent of full-load speed, varying with saturation, armature reaction, and brush position. Shunt-wound motors may be either constant-speed or adjustable-speed, as defined on the following page.

Because of commutation limitations, shunt-wound motors in integral-horsepower sizes are not suitable for across-the-line starting.

Shunt-wound motors, designed for operation over a given speed range by field control, are not technically shunt-wound motors in that a stabilizing series field (about 5 per cent shunt-field ampere turns) is added to assure stable speed under weak field conditions. This winding eliminates the possibility of armature

Speed-output curves

GENERAL 🌮 ELECTRIC

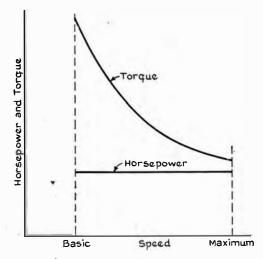
reaction demagnetizing the weakened shunt field with change in load. This assures drooping speed characteristics from no load to full load.

Compound-wound Motors

The addition of a cumulative, series field winding to the shunt field produces the compound-wound motor. This motor has a greater speed drop than a shunt-wound motor (about 25 per cent) from no load to full load.

Compound-wound motors are used on loads requiring high starting torque, or on loads subject to torque pulsations. The compound-wound motor is not practical for applications requiring adjustable speed by field control. With weakened shunt field, the series-field flux becomes a greater portion of the total flux; hence, changes in load may produce unstable speed.

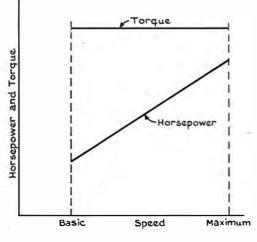
Compound-wound motors up to 5 hp are suitable for across-the-line starting.


Series-wound Motors

Series-wound motors have the field winding in series with the armature, and are subject to wide changes in speed with changes in load. A series motor with reduction in load will vary from rated speed at full load to infinite speed at no load. Because of this speed characteristic and the resultant possibility of dangerously high speeds at reduced loads, these motors are not suitable for belt drive or for use on any load where the torque might drop below 15 per cent of full-load torque.

Series motors are used on loads requiring very high starting torques or severe accelerating duty, or where the high-speed characteristic may be advantageous.

CONSTANT-TORQUE AND CONSTANT-HORSEPOWER DRIVES


A constant-torque drive is one which is capable of operating at constant torque throughout its speed range. A constant-horsepower drive is one which is capable of operating at constant horsepower through-

Curves for constant-horsepower motor

out its range. The accompanying curves show the variations of torque and horsepower with speed of the two.

A d-c motor operating with constant field excitation and with the armature supplied from a variablevoltage source is a constant-torque motor. An adjustable-speed d-c motor, having speed variation by means of shunt-field control, is a constant-horsepower drive.

Curves for constant-torque motor

Either type of motor can be operated as constanttorque or constant-horsepower drive but, for fullest utilization of material in the unit, each can be operated only as the type for which it is inherently suited.

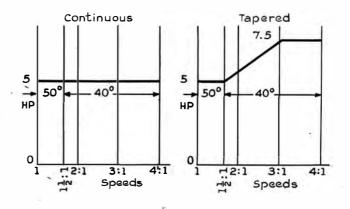
For applications requiring constant torque, the variable-voltage system of control makes possible the use of a smaller motor and, conversely, for constanthorsepower applications, the field-control motor will be the smaller. However, the economies of a particular installation may alter the recommendation.

For example, a constant-torque application, where constant-voltage d-c supply is available, may use a constant-torque, field-controlled, adjustable-speed motor. Although a smaller motor could be used with variable-voltage control, the additional cost of a motor-generator set and a variable-voltage control makes its use uneconomical or impractical.

SPEED RATINGS

Any shunt d-c motor is designed so that adjustment of speed from basic speed can be made by changing the field current. The basic speed, as listed in this catalog, is the full-load, full-field hot speed (subject to listed tolerances), and any listed speed range is obtained by shunt-field weakening. Both mechanical and electrical limitations set the maximum safe speed as listed.

The listings of motors are divided into constant-speed and adjustable-speed. The differences are given below:


Constant-speed D-c Motors

These motors are those designed for operation over speed ranges of less than 3:1. They deliver constant horsepower from basic speed to maximum speed. With full field excitation on the motor, it is possible to supply an adjustable voltage to the armature to obtain speeds below basic speed. With this type of operation, the motor is suitable for a constant-torque drive below basic speed. The minimum speed at which the motor can operate is limited by temperature rise because the motor carries full-load current at the lower speeds and the natural ventilation is reduced.

Adjustable-speed D-c Motors

These motors are those designed for operation over a speed range of 3:1 or greater by field control. They are all shunt wound, are listed as either constanthorsepower or tapered-horsepower, and can be furnished as constant-torque motors (see the preceding paragraphs on constant torque and constant horsepower). The comparison of the constant-horsepower and tapered-horsepower motors is shown by the accompanying curves. The tapered-horsepower motor delivers the lower listed horsepower, 50 C rise from basic speed to 150 per cent basic speed, horsepower tapering from the lower to the higher listed value between 150 per cent and 300 per cent basic speed, and delivers the higher listed horsepower value above 300 per cent basic speed.

Adjustable-speed motors, like constant-speed motors, can be operated below basic speed by adjustablevoltage armature control.

ARMATURE-VOLTAGE CONTROL

In the previous paragraphs, several references have been made to the operation of a d-c motor below basic speed by varying the armature voltage while the field excitation is held constant. This system can be used on any constant-torque drive, and the lower limit of speed is set only by heating caused by reduced ventilation. In general, a constant-speed or adjustable-speed motor can be operated continuously without injurious heating from about 30 per cent to 40 per cent of basic speed, depending on the rated basic speed.

There are several methods for changing the applied armature voltage: multivoltage control, resistance control, and adjustable generator-voltage control.

The multivoltage system (the least common of the three) utilizes a multivoltage power supply so that with constant-field excitation, the motor armature can be supplied from any one of two or more different voltages. This system is advantageous where a 115/230-volt system is available, and has been used with a three- or-more-unit d-c balancer set, used as a voltage divider to give 62.5/115/177.5/230 volts, from a 230-volt bus.

The resistance-control system utilizes a variable, series, or parallel resistance in the armature circuit.

GENERAL 🍘 ELECTRIC

There are two major disadvantages of the system: poor speed regulation and low over-all efficiency caused by resistance loss.

The adjustable generator-voltage control is the most widely used of the three. A motor-generator set supplies an adjustable voltage to the motor armature circuit, and a constant voltage is used to excite the d-c motor and the generator of the set. Speed control of the motor is obtained by varying the generator voltage. Such a system provides accurate adjustment of speed, and the speed regulation of the motor is as good or better than with shunt-field control.

Characteristics* and Applications of D-c Motors, 1 to 300 Hp

Туре	Starting Duty	Maximum Momentary Running Torque	Speed Regulation	Speed Control †	Applications
Shunt- wound, constant- speed	Medium starting torque. Varies with voltage supplied to armature, and is	125to 200per cent. Limited by com-{	8 to 12 per cent	Basic speed to 200 per cent basic speed by field control	Drives where starting requirements are not severe. Use constant-speed or adjustable. speed, depending on speed required. Cen-
Shunt- wound, adjust- able- speed	limited by starting resistor to 125 to 200 per cent full-load torque	mutation	10 to 20 per cent, increases with weak fields	Basic speed to 600 per cent basic speed (lower for some ratings) by field control	trifugal pumps, fans, blowers, conveyors, elevators, wood- and metal-working ma- chines
Com- pound- wound, constant- speed	Heavy starting torque. Limited by starting resistor to 130 to 260 per cent of full-load torque	130 to 260 per cent. Limited by com- mutation	Standard compound- ing 25 per cent. De- pends on amount of series winding	Basic speed to 125 per cent basic speed by field con- trol	Drives requiring high starting torque and fairly constant speed. Pulsating loads. Shears, bending rolls, plunger pumps, con- veyor crushers, etc.
Series- wound, varying- speed	Very heavy starting torque. Limited to 300 per cent to 350 per cent full-load torque	300 to 350 per cent. Limited by com- mutation	Very high. Infinite no-load speed	From zero to max- imum speed, de- pending on control and load	Drives where very high starting torque is required and speed can be regulated. Cranes, hoists, gates, bridges, car dumpers, etc.

* Table shows average values for standard motors.
 † Minimum speed below basic speed by armature control limited by heating.

General Effect of Voltage Variation on Direct-current-motor Characteristics

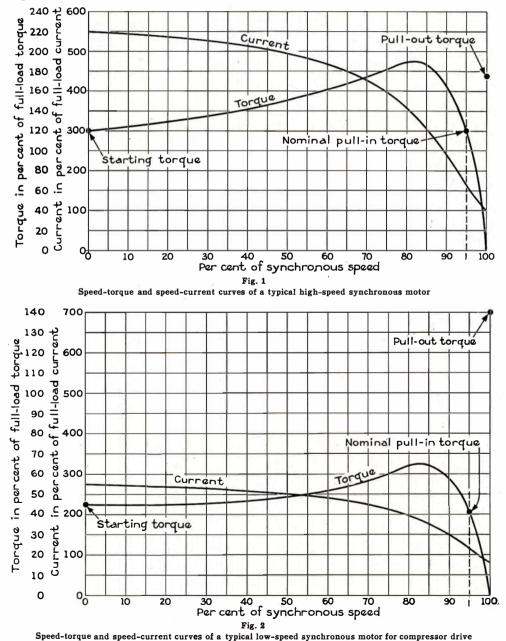
=Decrease

=Increase

Voltage Starting		Full-		EFFICIENCY		Full-load	Temperature Rise.	Maximum	Magnetic
Variation			Full Load				Full Load	Overload Capacity	Magnetic Noise
· · · · · · · · · · · · · · · · · · ·					SI	IUNT-WOU	ND		
120% Voltage	30%	110%	Slight	No change	Slight	17%	Main field. Commutator field and armature	30%	Slight
110% Voltage	15%	105%	Slight	No change	Slight	8.5%	Main field. Commutator field and armature	15%	Slight
90% Voltage	16%	95%	Slight	No change	Slight	11.5%	Main field. Commutator field and armature	16%	Slight
					COM	POUND-W	OUND		
120% Voltage	30%	112%	Slight	No change	Slight	17%	Main field. Commutator field and armature	30%	Slight
110% Voltage	15%	106%	Slight	No change	Slight	8.5%	Main field. Commutator field and armature	15%	Slight
90% Voltage	16%	94%	Slight	No change	Slight	11.5%	Main field. Commutator field and armature	16%	Slight

Notes: Starting current is controlled by starting resistor. This table shows general effects, which will vary somewhat for specific ratings.

GENERAL 🍘 ELECTRIC

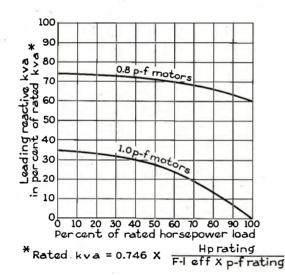

TYPES AND CHARACTERISTICS OF SYNCHRONOUS MOTORS

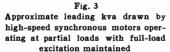
- 1. Advantages of synchronous motors
 - (a) Initial cost—Lower than squirrel-cage induction motors in low-speed ratings (450 rpm and below) of medium and large hp (50 hp and above), also in very large hp ratings (500 to 1000 hp and above) at medium speed (514 to 900 rpm).
 - (b) Unity or leading power factor—When applicable, synchronous motors provide powerfactor improvement at lower cost than any other means.
 - (c) Efficiencies—Generally higher than for induction motors of corresponding rating. This is a particularly important advantage in larger hp ratings.

 (d) Other features that may be advantageous: Constant speed independent of load Large air gap—two or three times that of induction motors

Lower starting current—in some ratings Synchronous motors are rarely used in sizes below 20 hp, and seldom used in sizes below 50 hp. Principal field of application is in sizes of 100 hp and larger.

- 2. Standard lines of synchronous motors High-speed line—500 rpm and above Low-speed line—less than 500 rpm
- 3. High-speed synchronous motors
 - (a) Construction—Stator is similar to that in induction motor. Rotor of salient-pole type




has insulated field winding which is brought out to collector rings. Rotor also has "amortisseur," or squirrel-cage, winding on the rotor since motor starts and accelerates as a squirrelcage induction motor. Direct-connected exciter is frequently provided.

(b) Characteristics-

Torques (ratings up to 500 hp)—starting and pull-in, 110 per cent, pull-out, 150 per cent; starting current, 500 to 700 per cent. Typical speed-torque and speed-current curves are shown in Fig. 1. Variation with load of reactive kva and power factor is shown in Fig. 3 and 4.

- (c) Typical applications---Centrifugal pumps Line shafts
 D-c generators Centrifugal compres-Belt-driven reciprocating compressors Rubber mills
 Fans Paper mills
 Blowers
- 4. Low-speed synchronous motors
 - (a) Construction—Usually furnished "engine type," i.e., without base, shaft, or bearings. When coupled to load, base, shaft, and pedestal-type bearings are added. Belted or motor-generator set exciters are usually used.
 - (b) Characteristics— Torques—Standard "compressor torques,"

40 per cent starting, 30 per cent pull-in, and 140 per cent pull-out. Higher values can be obtained by special design.

Starting current—With compressor torques— 250 to 350 per cent. Higher torques mean higher starting current.

Typical speed-torque and speed-current curves are shown in Fig. 2.

 (c) Typical applications Reciprocating compressors (largest field of use)
 Jordan engines Centrifugal and screwtype pumps
 Ball and tube mills
 Chippers

Metal-rolling mills

Synchronous-motor control

tors

5.

Vacuum pumps

Electroplating genera-

- (a) Primary control—similar to that provided for squirrel-cage induction motor—may be fullvoltage or reduced-voltage, manual or magnetic.
- (b) Field control—always magnetic and consists of: Field and field-discharge contactors Field-application and field-removal relays Discharge resistor Field rheostat Line and field ammeters

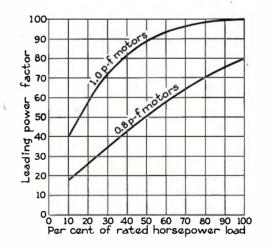
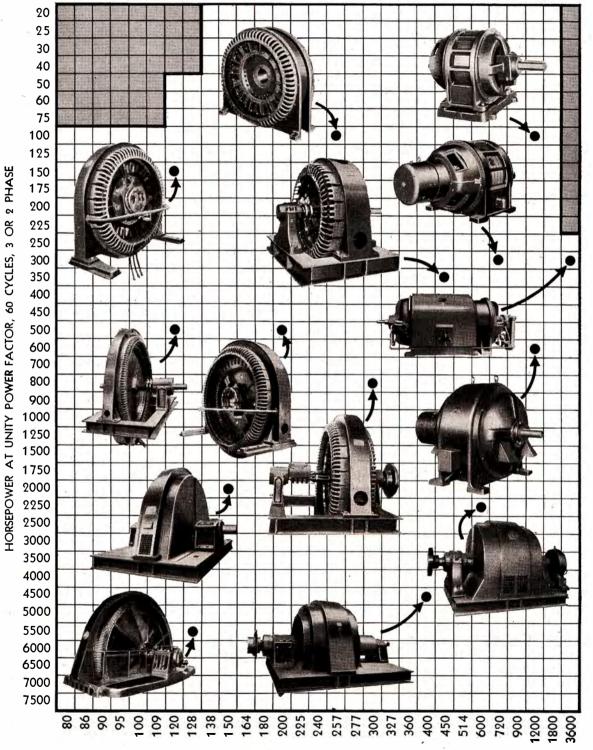



Fig. 4 Approximate power factor of highspeed synchronous-motors operating at partial loads with full-load excitation maintained

Rating Chart for General Electric Synchronous Motors

General Electric manufactures standard and special synchronous motors covering a wide range of ratings. This chart gives a general idea of the appearance of some of these many motors that can be built. A G-E synchronous-motor specialist will gladly assist in the selection of the drive best suited to your requirements.

SPEED IN RPM.

GENERAL BELECTRIC

26

HOW TO IDENTIFY MOTORS

`HE following data and instructions will help you identify motors you have, will facilitate ordering duplicate motors or renewal parts, and will aid in correctly applying such motors to new applications. Knowledge of the system used in identification of G-E motors also will help in correctly ordering or specifying new motors. The information included is as follows: Nomenclature of motors and generators. T In frames that have mounting dimensions standardized by the motor industry: 1. Type letters. 2. Frame numbers. II. Nomenclature of motors and generators. In frames not standardized by the motor industry: Ťype letters. 1. 2. Frame numbers. Form letters. 3. III. Starting kva code letters on nameplates.IV. Mounting-assembly symbols. V. Information necessary for commercial identification. VI. General information applying to fractionalhp motors, generators, and motor-generator sets.

General Electric has complete information on file for each motor shipped. This information is filed by model number. Always state model number when referring to a motor you have.

G-E ENGINEERING SERVICE

The Company builds a large number of different forms of motors and controllers to meet the varied requirements of service, either electrical, mechanical, or local. G-E salesmen and engineers are always glad to assist in selecting the particular type or form of motor that will best meet the conditions.

In applying motors either where the location involves unusual physical conditions, or where the machines to be driven require other than standard characteristics, it is respectfully suggested that the recommendations of the Company always be obtained, as to the type and form of motor best adapted to the especial conditions of the application.

In requesting such information, please be sure to give at least the following data.

- 1. Alternating or direct current available?
- 2. Voltage?
- 3. Frequency (if alternating current)?
- 4. What is the motor to drive? (If an individual machine—the manufacture and size.)

- 5. Belted or direct connected? (Pulley dimensions, if not standard.)
- Gear or chain drive? Outboard bearing and shaft extension. Subbase, and by whom to be furnished.

GENERAL NOMENCLATURE OF G-E MOTORS AND GENERATORS

In general, motors and generators are identified in three ways; first, by model number which identifies a definite design—all machines with the same model number being identical both electrically and mechanically; second, by serial number (serial numbers are not used on certain small sizes) which identifies a motor or generator as an individual machine; third, by nomenclature (type, frame, or form) which is identification by family group, line, construction, or characteristics.

The system of nomenclature is divided into two groups; first, that used for the identification of machines built in frames that have mounting dimensions standardized by the industry; second, that used for the identification of machines built in frames the mounting dimensions of which are not standardized by the industry.

I—Nomenclature of Integral-hp G-E Motors and Generators

In Frames That Have Mounting Dimensions Standardized by the Motor Industry

The nomenclature for these motors and generators involves the use of type letters and frame numbers.

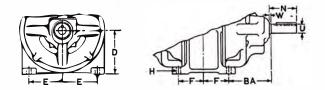
1—TYPE LETTERS

Type letters are intended to indicate a line of motors and generators which have the same general

GENERAL 🛞 ELECTRIC

characteristics without special reference to the details of current supply, such as: voltage, frequency, or number of phases. Following are the type letters of the more popular lines of machines, together with descriptions of the general characteristics which these type letters designate:

- B Direct-current motors and generators.
- K Normal-starting-torque, normal-starting-current and low-starting-current, polyphase squirrelcage induction motors.
- KF Normal-starting-torque, low-starting-current, polyphase squirrel-cage induction motors. In the Tri-Clad construction, the type letters KF are superseded by the type letter K with code letter stamped on the nameplate to indicate low starting kva per horsepower.
- KG High-starting-torque, low-starting-current, polyphase squirrel-cage induction motors.
- KB Normal-starting-torque, normal-starting-current and low-starting-current, polyphase squirrel-cage induction motors, especially designed for quiet operation.
- KR High-slip (high-starting-torque), relatively lowstarting-current, polyphase squirrel-cage induction motors.
- KE High-slip, relatively low-starting-current, polyphase squirrel-cage induction motors, designed for quiet operation; elevator service.
- M Polyphase wound-rotor induction motors.
- MB Polyphase wound-rotor induction motors designed for quiet operation.
- MR High-torque wound-rotor motors for crane duty.
- KC Normal-torque, single-phase capacitor-motors.
- KCJ High-torque, single-phase capacitor-motors.
- SCR Repulsion-induction single-phase motors.
- SCA Repulsion-induction single-phase motors for reversing service.
- SCE Repulsion-induction single-phase motors, especially designed for elevator service.
- SCH High-starting-torque, repulsion-induction singlephase motors.
- RB Repulsion, brushing-shifting, adjustable-varying-speed single-phase motors.


Note.—Effective November 1, 1940, all single-phase and polyphase motors (except wound-rotor motors) rated ½ hp and larger have, stamped on the nameplate, a code letter indicating starting current in terms of lockedrotor kva per horsepower as given in the table on the following page.

2—FRAME NUMBERS

The frame numbers of these motors and generators specifically identify their mounting dimensions—all machines having the same frame designation will have identical mounting dimensions, regardless of electrical characteristics, thereby providing interchangeability.

Following are the frame numbers used: 203, 204, 224, 225, 254, 284, 324, 326, 364, 365, 404, 405, 444, 445, 504, and 505.

1. The standardized frame number indicates a fixed set of mounting dimensions, which are dimensions D, E, F, BA, H, and the shaft extension, as shown in the illustration below.

2. The first two digits in the standardized frame numbers definitely fix the dimensions D, E, BA, H, U, and N minus W. In the case of horizontal motors with feet, the first two digits form a number which is four times dimension D, height from bottom of feet to center line of shaft. The third or last digit fixes the value of dimension F.

3. Motors of the same frame number, while they will have the common, standardized mounting dimensions, may differ in what are ordinarily less-essential dimensions (even over-all dimensions) with the different types of enclosures or with other mechanical modifications. Therefore, to obtain detailed dimensions of a given motor, the dimension print applicable to that specific construction should be consulted.

4. In order to provide a simple, standardized means of identification for variations from the standardized mounting dimensions, four letters have been standardized for use as frame suffix letters to denote variations as follows:

- S—Standardized short shaft-extension for direct connection. (Does not apply to vertical machines.)
- V—Vertical machine with standardized vertical mounting dimensions.
- Y-Special mounting dimensions. (Special dimension information required for mounting applies to both horizontal and vertical machines.)
- Z—All mounting dimensions standard, except shaftextension. (Applies to both horizontal and vertical machines.)

Hence, the complete frame designation for a motor or generator having mounting dimensions differing from standard is made up of the frame number followed immediately by one or two of the above frame suffix letters; for example, 364S or 364VZ.

II—Nomenclature of G-E Motors and Generators In Frames Not Standardized by the Motor Industry

The nomenclature for these motors and generators involves the use of type letters, frame numbers, and in some cases, form letters. Type letters indicate the kind of motor and characteristics: the frame number indicates the mounting dimensions; and form letters, when used, indicate the frame construction and type of bearings. The combination of the type letter, frame number, construction features, and/or form letters determines the external dimensions of a given machine, and all must be used to obtain the proper dimension print.

1-TYPE LETTERS

- CD Direct-current motors and generators.
- CDM D-c motors and generators for marine service.
- QS Two-phase synchronous motors.
- TS Three-phase synchronous motors.
- QSB Two-phase synchronous motors especially designed for quiet operation.
- TSB Three-phase synchronous motors especially designed for quiet operation.
- QSF Two-phase synchronous motors, flywheel type.
- TSF Three-phase synchronous motors, flywheel type.

GENERAL 🎲 ELECTRIC

Induction Motors

Type and form letters previously used on induction motors in Frames 542 and larger, as well as loom motors in Frames 3914 to 3958. were changed as of May 1, 1940. These motors now have the same type and frame-suffix letters as Frames 203 to 505, standardized by the motor industry.

2—FRAME NUMBERS

Type letters are followed by frame numbers which indicate mounting dimensions.

A suffix letter is used in some cases with a frame number to indicate another series of frame designations.

The frame designation may be followed by the letter S to denote short shaft extension for direct drive; the letter Z to denote special shaft extension; and/or the letter Y to indicate special mounting dimensions requiring an outline drawing.

Following are the various frame "series" used:

	0
1-99	D-c motors and generators
400 - 499	Induction motors
500	Induction motors
900	Synchronous motors and generators
1000-1996	D-c motors and generators
3000-3690	Induction motors, D.DO.
3900	Induction motors (loom)
5500	Induction motors (crane)
6000	Synchronous motors and generators
N6200-N6219	Induction motors, vertical, hollow-shaft or solid-shaft (nor-
	mally K or KF)
N6300-N6319	Induction motors, vertical, hollow-shaft or solid-shaft (nor-
	mally K or KF)
6320-6339	Induction motors, horizontal and vertical

3—FORM LETTERS

Frame numbers are followed by form letters to indicate (first) frame construction and (second) type of bearings. Form letters in combination with frame numbers indicate external dimensions, and hence are a direct reference to the correct dimension print for any particular type. Form letters now used:

- First (only one used). For both direct-current (Type CD, Fort Wayne only) and synchronous motors except as noted below.
- A Cast, steel-plate, or open box, horizontal frame.
- B Open, skeleton, horizontal frame; synchronous motors only.
- E Protected, closed box or steel-plate, horizontal frame with air intake and discharge openings; synchronous motors only.
- G Totally enclosed, horizontal frame, with or without corrugations.
- H Enclosed, ventilated, horizontal frame, with or without pipe or duct connection.

- K Round frame without feet, other than drawnshell.
- L BM (Bureau of Mines) classification; directcurrent motors only.
- M Rolled-plate, frame, rotating armature; synchronous motors only.
- R Totally enclosed, externally (fan) cooled, horizontal frame.
- V Open, vertical frame; synchronous motors only.
- W Enclosed, vertical frame, with or without ventilation.
- Second (not used on vertical machines). For both direct-current (Type CD) and synchronous motors except as noted.
- A Ball bearings.
- D Waste-packed bearings; direct-current motors only.
- E Roller bearings.
- L Sleeve bearings.
- Y Special bearings.

III—Starting-kva Code Letters on Nameplates

In addition to the foregoing type and form letters, the following code letters are now used on all singlephase, polyphase squirrel-cage induction, and synchronous motors rated $\frac{1}{2}$ hp and larger, to indicate the locked-rotor starting kva per hp.

Code Letter	Kva per Hp, Locked-rotor	Code Letter	Kva per Hp Locked-rotor
A B C	0.0 - 3.14 3.15 - 3.54 3.55 - 3.99	J K	$\begin{array}{c} 7.10- \ 7.99 \\ 8.00- \ 8.99 \end{array}$
D	4.00 - 4.49 4.50 - 4.99	L M	9.00- 9.99 10.00-11.19
E F	5.00-5.59	N P R	11.20-12.49 12.50-13.99
G H	5.60-6.29 6.30-7.09	R	14.00 and up

$$\begin{split} & K \text{va per } hp = \frac{E \times LRI \times K}{1000 \times hp} \text{ and} \\ & LRI = \frac{K \text{va per } hp \times hp \times 1000}{E \times K} \\ & Where E = \text{rated voltage} \\ & LRI = \text{Locked-rotor current in amperes.} \\ & K = 1 \text{ for single-phase,} \\ & 2 \text{ for two-phase,} \\ & 1.73 \text{ for three-phase.} \end{split}$$

Code Letters Usually Applied to Ratings of Motors Normally Started on Full Voltage

Cod	e Letters	E	F	G	H	J	K	L	M	N
Horse-	3-phase		15 up	10-71/2	5	3	2	11/2	1	3⁄4
power	1-phase	5	3	11/2			1	3/4	1/2	

IV—Mounting-assembly Symbols for Wall- and Ceiling-mounted Motors

- 1. If motors are not for floor mounting, the order should state whether they are to be for wall mounting or ceiling suspension.
- 2. The following symbols should be used on orders to indicate the assembly reference:

Ceiling Mounting

Assembly W-1 Assembly W-2 Assembly W-3 Assembly W-4

Assembly C-1

Assembly W-1

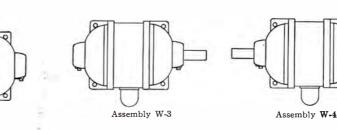
Assembly W-5

Wall Mounting

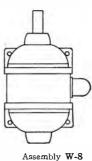
Assembly W-5 Assembly W-6

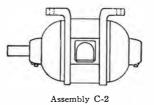
Assembly W-7 Assembly W-8

Assembly C-2


Assembly W-2

Assembly W-6


all mounton orders symbol to avoid confusion with other symbols. When motors are ordered according to a particular assembly symbol, the end shields are assembled so


that the oil gages and grease fittings are properly installed for operation with the motor in the position shown. However, no attempt is made to locate these fittings on any particular side of the motor. In most cases, motor end shields are so drilled that the oil gages can be moved by the user to the desired side.

The word "assembly" should always precede the

Ceiling mountings

Wall mountings

V—Information Necessary for Commercial Identification

For ordinary commercial purposes, the following information will identify all motors and generators: Type letter or letters

Assembly C-1

Frame number (for frame numbers in which the various types and ratings of motors and generators are built, refer to the price pages of this catalog)

Form letter or letters, where used

Horsepower, kw, or kva

Speed

Voltage and, if a-c, frequency and number of phases of power supply

Temperature rise and time rating

Type of bearings

If d-c; shunt, series, or compound windings

Modifications; such as enclosures, special shaft extensions, etc.

Note: For identification of synchronous motors and generators, refer to the nearest $G{-}E$ office.

While the above information is usually sufficient for commercial identification, it will not identify motors or generators for duplication insofar as exact performance and strict interchangeability of parts are concerned. In order to provide such identification (which is required when ordering renewal parts or duplicate machines), model numbers (or serial numbers, where used) are assigned, which identify every detail of the machine.

VI—General Information Applying to Fractional-hp Motors, Generators, and Motor-generator Sets

Definition

A fractional-horsepower motor is a motor built in a frame smaller than that having a continuous rating of 1 hp, open type, at 1700–1800 rpm. This includes motors rated for continuous duty at 1 hp, 3450 rpm; $\frac{3}{4}$ hp, 1725 rpm; $\frac{1}{2}$ hp, 1140 rpm; $\frac{1}{2}$ hp, 860 rpm; and smaller.

Scope

Motors listed in this catalog are for general-purpose applications and some special applications. In addition to the motors listed herein, specialty motors can also be furnished for certain applications where largequantity production is anticipated. Refer all such requests to the nearest G-E office.

ORDERING DIRECTIONS

Replacement Motors

When requests are received for *special* replacement motors not in factory stock, obtain replacement motors from the manufacturer of the appliance or device on which this special motor was originally furnished. In the majority of cases, large manufacturers using G-E motors carry replacement motors in stock and better service can be rendered by referring to the manufacturer of the device or appliance, rather than by ordering a special motor to be built up in our factory. If you cannot obtain a replacement motor from this source, refer the order to G.E.

Listed Motors

Obtain motor model numbers and stock information or estimated time required for shipment from the Company. General-purpose motors of the following constructions are ordinarily in stock.

Sleeve-bearing, open and totally enclosed, solidand resilient-base; ball-bearing, open and totally enclosed, solid-base; explosion-proof, sleeve- and ballbearing, solid-base. In addition, special-service washing- and ironing-machine motors, fan-duty motors, etc., are also listed.

In placing order, specify:

- 1. Complete model number (if listed).
- 2. Type (First letters in model number, such as KH, K, etc.).
- 3. Frame (two numbers following type letters).
- 4. Horsepower, full-load speed, voltage, and frequency.
- 5. Type of base (solid or resilient).
- 6. Direction of rotation as viewed from end opposite the shaft extension. Motors are normally connected for counterclockwise rotation, and will be furnished as stock in cases where motor can easily be reconnected for opposite rotation by purchaser.
- 7. Built-in overload device (40-diam frames only) or external Thermo-Tector (60and 70-diam frames), if desired.

Order motors by description, giving complete information as listed above.

NOMENCLATURE

The first letters of the model number (such as KH, K, BC) represent the motor type. The two numbers following (such as 45, 63, etc.) represent the frame size. The frame size is followed by both letters and numbers used as exact model identification. When the model includes a built-in automatic-reset overload device (40-diam frames) or externally mounted Thermo-Tector (60- and 70-diam frames), the suffix X is added to the model number to represent automatic-reset overload device, and the suffix Y is added to represent manual-reset overload device.

GENERAL 🛞 ELECTRIC

HOW TO SELECT A-C CONTROL

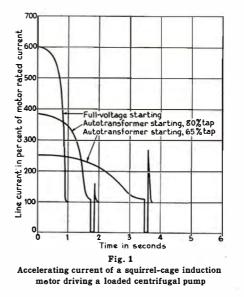
What Methods of Starting Polyphase Induction Motors to Consider

THERE are two major considerations which should be made when a-c motor control is being selected. These are:

*

- 1. Shall the control be manually operated or magnetically operated?
- 2. Can motors be started at full voltage or must they be started at reduced voltage?

Manual control is generally more economical, but the convenience of push-button starting, or of safe automatic starting, makes magnetic control preferable.

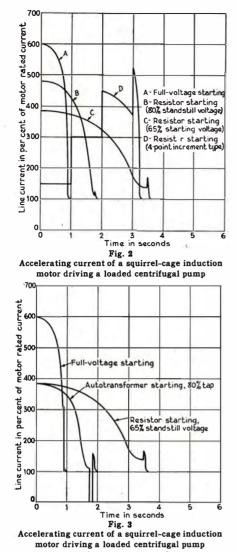

Full-voltage starting of motors is generally the most economical method of starting. In addition, modern motors are all designed not only to withstand full-voltage starting, but also are designed with low starting current to permit their use on modern feeder lines without producing objectionable voltage regulation or annoying light flicker. For those conditions where limited line capacity necessitates the use of current-reducing controllers, the text on pages 119–124 will be useful.

Several alternative methods are available for reducing starting current and improving line-voltage conditions. Before examining in detail the accompanying curves which illustrate some of these other methods, the following important considerations should be fixed in mind:

- 1. A reduction in starting current is accompanied by a reduction in starting torque; therefore, it is essential to know something about the load-torque characteristics in determining if a given current limitation can be met. With all starting methods, the torque of a squirrel-cage motor varies as the square of the voltage applied to the motor terminals. The line current with the autotransformer method varies in the same manner, and it is convenient to remember that torque and line current are reduced at the same rate. With resistor or reactor starting, however, the starting current varies directly with the voltage at the motor terminals.
- 2. A question of economics is always involved and must be recognized when it is desired to reduce motor-starting current below normal full-voltage values. A manufacturer of electric equipment can usually supply a more desirable combination of motor and control (from the power company's viewpoint) than the buyer is willing to pay for.
- 3. The curves are a study only in absolute values of current. In general, conditions are most improved

with the lowest obtainable values of current; but a given higher value of current may or may not cause more-objectionable light flicker, depending on the system capacity, the power factor of the distribution circuit, the power factor of the motor and the starting device, and the frequency of starting.

4. The curves are necessarily drawn for a particular motor, a particular load, and a particular inertia representing a common application. Certain generalizations which might be made from an examination of these curves could be inaccurate for a different set of conditions.


Fig. 1

Starting on the autotransformer taps reduces the accelerating torque, as is evident by the longer accelerating time. The lower the tap, the lower the initial inrush and the higher the peak at throw-over.

Fig. 2

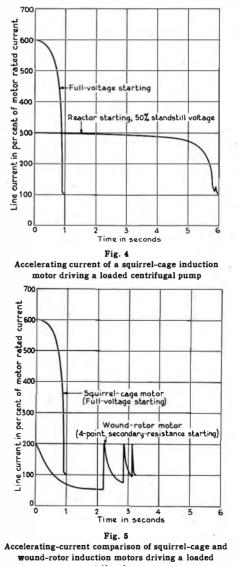
Curve "B" does not represent a practical starting arrangement, because a similar current reduction could be obtained with a low-starting-current motor and a full-voltage starter at a lower cost. A resistor starter with a current characteristic of this kind is occasionally valuable where a reduction in the full-voltage starting current is not necessary, but it is desirable to prevent the sudden application of the full-voltage torque where this is high enough to damage the mechanical drive. Curve "B" does indicate, when considered in connection with curve "C," the progressively reduced accelerating torques in using higher values of series resistance. Note particularly the low-current peaks produced on transferring to line voltage with two-point resistor starters. Curve "D" illustrates the use of a four-point "increment"-type resistor starter to meet a restriction on the rate of increase of current in starting.

GENERAL BELECTRIC

In this case, current increments of 150 per cent were permissible with one-second intervals between. At the end of two seconds, the voltage at the motor has been increased to 75 per cent normal where sufficient torque is available to start the load, as is indicated by the decrease in current during the third second. The resistor is completely short-circuited at the end of three seconds, causing line voltage to be applied to the motor for normal operation. Whether or not the load breaks away from rest before the resistor is completely short-circuited is usually considered unimportant under this type of starting-current restriction. **Fig. 3**

These curves show a direct comparison of two characteristics already examined. The starting inrush from the line is the same with 80 per cent voltage on the motor through an autotransformer, or with 65 per cent voltage by means of a series resistor. With the autotransformer, the initial torque is 64 per cent; but with the resistor, it is only 42 per cent. The curves show this by the longer accelerating period with the resistor starter. Thus, more torque is produced per line ampere with the autotransformer starter than with the resistor starter.

Fig. 4


A smooth start by means of a series reactor impressing 50 per cent standstill voltage on the motor is shown

GENERAL 🐲 ELECTRIC

here. The comparatively long accelerating time indicates a low value of accelerating torque, but the voltage at the motor terminals and the percentage of fullvoltage torque gradually increase as full speed is approached, until the motor-terminal voltage reaches almost normal value before the reactor is shortcircuited. A series resistor impressing only 50 per cent standstill voltage on the motor would give the same initial inrush, but a current peak on short-circuiting the resistor higher than the initial peak. For this type of load which has a rising speed-torque characteristic, a two-point reactor starter is definitely superior to a two-point resistor starter, but costs somewhat more.

Fig. 5

This characteristic indicates the possibilities of meeting unusually low accelerating-current restrictions by means of a wound-rotor motor and suitable control. The curve shows how the current can be kept within 200 per cent of normal by short-circuiting an external secondary resistor in three steps. By using six steps, the current could be kept within 150 per cent of normal. The cost of this type of motor and its associated control prevents wide use being made of valuable characteristics.

centrifugal pump

MOTOR STARTING ON SYSTEMS OF LIMITED POWER CAPACITY

In industrial plants, it is frequently desired to employ induction and synchronous motors which are so large that they may cause very noticeable disturbances to the line voltage at the time they are started. To prevent such disturbances from interfering with plant operation and to assure sufficient torque for starting requires not only proper selection of the motor and its control, but also of the generating, distributing, and voltage-regulating equipment of the plant.

This problem is important whenever the starting current of the motor is a sizable proportion of the rated output current of the generator or generators of the power supply. Thus, the problem may arise with both small and large installations, from small enginedriven generators for supplying air-compressor motors in isolated gasoline stations, to the largest plants, such as steel mills, in which motors of 5000 horsepower or larger must be started.

The information given in the following pages is designed to assist those charged with the responsibility of selection of proper plant electric equipment to best co-ordinate their choices of motors and control with selection and use of power-supply equipment.

TYPES OF POWER SUPPLY

An industrial plant may receive powerfrom generating equipment forming a part of the plant, from the lines of a public-utility system, or from both.

Public-utility Supply

Since the load of an industrial plant is usually only a fraction of the total load on a public-utility system, it is only seldom that the starting current of a motor in a plant can cause a dip of more than a very few per cent in the system voltage, However, a small voltage dip may be important, since public-utility systems must adopt more stringent measures to avoid light flicker than are usually necessary for a factory. Power contracts usually contain phrases which limit the starting current permitted to be drawn by any motor in the plant supply.

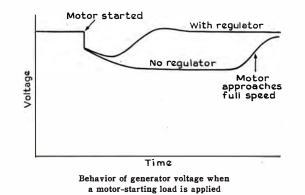
In plants supplied by utility systems, it is ordinarily necessary to see that the starting-current limitations are met by selection of a suitable type of motor or by use of reduced-voltage-starting equipment.

When reduced-voltage starters are used to reduce the line current at start, care must be taken to see that the corresponding reduction in starting torque does not prevent successful starting.

Information concerning the full-voltage starting current and torque of a-c motors is readily available from manufacturers. The portion of Table I on page 124 headed "For 100% Line Voltage" indicates the reduction in current and torque applicable to various starting methods.

In relatively rare cases, the starting current, while not too large to comply with power-company requirements, may be large enough to cause an objectionable voltage drop in the transformers and feeders supplying the motor.

For example, a 100-hp motor having a full-voltage starting current of six times normal would cause a voltage drop of approximately 25 per cent through a 100-kva transformer. Severe voltage drops usually occur only when the motor is supplied by an unusually long feeder, or by a transformer only about as large as is required to supply the continuous load of the motor itself. Such cases should be referred to competent engineers for recommendations.


Systems of Limited Power-supply Capacity

When a plant is supplied by a generating station of only about such size as will supply the factory in question (for example, a factory supplying its own power or supplied by a relatively small utility system), the voltage disturbance caused by starting of a large motor may be quite severe, and may cause possible disturbance to the operation of motors or control, as well as inducing light flicker.

When the total kva capacity of the generators is not many times the horsepower rating of the motor to be started, attention must be given to the behavior of the generator voltage at the time of application of a motorstarting load.

NATURE OF VOLTAGE DISTURBANCES

The behavior of the voltage of an a-c generator when a motor-starting load is suddenly applied is illustrated below. At the instant the load is applied, the generator voltage drops. The amount of this instantaneous drop is not affected by the presence of a voltage regulator. After the sudden drop, the voltage continues to fall, although gradually. If no regulator is in use, the voltage will level off to a steady value at which it will remain until it rises as the motor approaches full speed. To be conservative, it is usually best to assume that the reduction in current as the motor approaches full speed does not affect the minimum voltage reached. The time at which this minimum voltage is closely approached may vary, depending on conditions, from about one half second to several seconds. The subsequent time at which the voltage returns toward normal is, of course, dependent on how quickly the motor accelerates its load.

If a voltage regulator is used, it arrests the fall of the voltage following the instantaneous drop, so that, although the voltage does fall somewhat after this drop, it does not fall as far as it would if there were no regulator. The time to reach minimum voltage with a regulator is ordinarily of the order of one half second or less.

GENERAL 🍘 ELECTRIC

After the minimum voltage has been reached, the regulator restores the voltage toward normal. On its return, the voltage may overshoot slightly or, if the load is a heavy one, the voltage may not return all the way to normal. At the low power factors involved in motor starting, a regulator will ordinarily restore generator voltage to normal if the total load kva drawn by the motor being started and by the initial load on the generator does not exceed the generator rating. If the regulator can do this, the time required does not usually exceed one or two seconds.

By reducing both the amount and duration of disturbances, use of a voltage regulator makes possible the starting of a motor of given size from a much smaller generator than could be used without a regulator. The cost of regulating equipment is only a small fraction of the increase in generator cost which would be required to obtain comparable performance without a regulator. Hence, voltage regulators are almost universally used with generators supplying industrial power.

LIMITATIONS TO ALLOWABLE DISTURBANCE

The extent to which the voltage may be permitted to drop and the value to which regulators, if present, must be able to restore the voltage, are determined by requirements of the equipment connected to the generator.

Light Flicker

Flicker places much more stringent limitations on voltage dip than do most other limiting conditions. The acceptability of light flicker is affected by the type of work being done in the lighted location, by the characteristics of the observer, and by both the magnitude and frequency of the voltage dips. Dips at a frequency of about 8 cycles per second, such as might be caused by a reciprocating compressor, are most noticeable and may be perceived even when they have a pulsation as small as about 0.5 per cent. If the dips are infrequent, a dip of 1 per cent in voltage may not be perceptible. Also, a dip which is perceptible may not be objectionable, and infrequent dips as great as 5 per cent or more may be acceptable.

It is not usually economical to attempt to eliminate light flicker entirely on limited-capacity systems. On the other hand, there is little agreement as to what constitutes acceptable flicker. Consequently, in each case where light flicker is a determining factor, it is desirable to define the requirements with respect to flicker in terms of voltage drop under specified conditions.

Motors in Operation

If the voltage dips to less than 70 per cent, there is a possibility that motors already operating on the system may stall. Also, if the motors are temporarily loaded above their ratings, as in the case of a special duty cycle, stalling or pull-out may occur at voltages that are not as low as 70 per cent.

Operation of Undervoltage Protection

The voltage disturbance should not be so severe as to cause undervoltage protection to disconnect the motor or to disconnect other equipment already operating. If the undervoltage protection is provided

by a device to trip a circuit breaker, it may be of the time-delay type which permits the breaker to remain closed during momentary disturbances. If the protection is provided by the inherent characteristic of a contactor to drop out on undervoltage, the contactor will open almost immediately after the voltage falls to the drop-out value. (Some control equipments are provided with time-delay devices which permit a contactor to reclose within a certain time interval, but these are not always helpful, because they do not prevent disconnection during the disturbance.) Contactors are designed to pick up when the voltage is not less than 85 per cent. When picked up, most of them will hold in, even though the voltage dips to as low as about 65 per cent.

Torque Requirements

The starting torque which a motor develops is proportional to the square of the voltage at the motor terminals. Thus, at half voltage a motor will develop only one quarter of the torque it will develop at full voltage. The full-voltage starting torque is dependent on the motor design and is usually expressed in percentage of the torque delivered by the motor at full load, full speed. The torque required for starting is dependent on the type of load the motor drives. Therefore, for each motor application, regardless of the method of starting used, the voltage at the motor terminals must be above a certain value to make starting possible.

If the excitation of the generator is not changed, as by regulators or hand control, the minimum value to which the load reduces the voltage must not be so low as to be inadequate for starting the motor. To maintain sufficiently high minimum voltage without a regulator would ordinarily require so large a generator that the use of a regulator is nearly always justified. When voltage regulators are used, the permissible minimum voltage is not limited by torque requirements. The motor will start if the regulator can restore the voltage to an adequate value.

Occasionally with high-speed motors driving loads which increase rapidly as the speed rises, such as 3600-rpm motors connected to centrifugal pumps, a power system or a starting method which can provide adequate voltage to cause the motor to break away from standstill may, nevertheless, not provide adequate voltage to accelerate the motor to its full speed. Such cases require special consideration.

Special Limitations

The presence of X-ray equipments, or of certain types of lamps that may go out on slight undervoltage, or of other special conditions, may determine the allowable minimum voltage.

METHODS OF STARTING

Common methods of motor starting are:

- (1). Full-voltage starting
- (2). Reduced-voltage autotransformer starting
- (3). Resistor starting
- (4). Reactor starting

(5). Secondary-resistance control (of wound-rotor motors.)

123

TYPES OF SQUIRREL-CAGE INDUCTION MOTORS

Use is commonly made of squirrel-cage induction motors of three types, designated as follows:

(1). Normal-starting-torque, normal-starting-current.

Normal-starting-torque, low-starting-current. (2).

(3). High-starting-torque, low-starting-current.

The selection of a motor of either the second or third of these types may help to meet the requirements of a particular system. Usually the reduction in starting current made possible by selecting a motor of either of these two types is less than the reduction obtainable by use of reduced-voltage starting.

INITIAL LOADS

If the generator is already carrying a load when a motor is started, this initial load will have an influence on the voltage dip. The extent of this influence will depend on the amount of this other load, on its power factor, and on its character (induction, synchronous, lighting, etc.). Initial loads may either accentuate voltage disturbances or reduce them. The effect of motors previously connected depends on the percentage of their ratings to which the motors are loaded. The effect of initial loads not exceeding about 25 per cent of the generator rating can ordinarily be neglected.

LINES, CABLES, AND TRANSFORMERS

Wherever appreciable, the voltage drop in lines, cables, and transformers connecting motors to generators should be given consideration. However, cable runs of not over 50 ft per 100 volts of circuit voltage may ordinarily be neglected.

MOTOR SYNCHRONIZATION

Because synchronous motors start and run as induction motors up to the time field is applied, their starting requirements during this period are similiar to those of induction motors. When, at the end of the starting period, synchronous motors are up to speed and directly connected to the line, and field excitation is applied, they must be able to pull into step with the system frequency.

To assist in the selection of synchronous motors, manufacturers publish values of pull-in torque. These values apply to synchronization at full voltage and specified values of load WR². Data are also published concerning the increase in pull-in torque which may be required when the load WR² exceeds the published normal value.

If the voltage at synchronization is less than the rated voltage of the motor, the synchronizing ability of the motor is reduced. The torque against which a motor will pull in a given WR² varies approximately as the square of the voltage. Thus, for a given WR², a motor with 95 per cent applied voltage will pull in against only 90 per cent as much torque as it would if full voltage were applied.

Just before synchronizing, a motor may draw about one half the current it would draw on full-voltage starting. For this current, the motor voltage just before synchronizing can be calculated for a given motor, if the system characteristics are known. A generator with a voltage regulator will ordinarily hold its normal voltage at the power factors involved in synchronization, if its output kva at the time does not exceed its kva rating. However, it may be necessary to calculate the voltage drop in lines, cables, or transformers supplying the motor to determine the voltage at the motor.

HOW TO SELECT EQUIPMENT

From the foregoing, it is obvious that there are many factors that may need consideration when selecting generating equipment, motors, and motor starters for operation on power systems of limited capacity. To aid in making proper selections, when the operating conditions are relatively simple, Table I has been prepared. In it are included the specific, but necessarily approximate, data needed in making the calculations that determine the selection of the equipment. It should be especially noted that the data apply only for the operating conditions listed at the top of the table.

How the table is utilized in solving typical problems is illustrated in the examples which follow.

Example 1

Determination of Starting Method and Minimum Generator Size

It is desired to start a squirrel-cage induction motor under the conditions listed for Table I and when:

Motor horsepower =100 hp. Full-voltage starting current =6 times full-load current. Full-voltage starting torque =120 per cent of full-load, full-speed torque. Starting torque required =45 per cent of full-load, full-speed torque.

Hence: $\frac{\text{Starting Torque}}{\text{Full-voltage Starting Torque}} = \frac{45}{120} = 0.375 \text{ (minimum allowable).}$

From Table I, it will be noted that the use of an autotransformer-type starter set on the 65-per-cent tap would result in

Starting Torque Full-voltage Starting Torque =0.42.

Therefore, this type of starter and tap would make adequate starting torque available (after the voltage has returned to normal).

For this starter and tap, the minimum generator kva is also determined from Table I, as follows:

Since the full-voltage starting current of the motor was assumed to be six times its full-load current, the formula for K at the bottom of the table shows that K = 6

In the column under the heading "K = 6," it will be noted that

Minimum Gen. Kva =2.7. Motor Hp Rating

Hence: Minimum Gen. Kva =2.7 ×100 =270

All the other listed standard types of starters and settings are seen to require more generating capacity or provide less torque than the method and setting chosen.

Example 2

Determination of Starting Method and Minimum Generator Size

Although the nature of the information sought in this example is the same as that in Example 1, this second example is included primarily to illustrate how Standard, 0.8-pf generators are used Voltage regulators control all generators Generator voltage does not i Voltage drop from generators to motor is negligible.

Initial load on generators does not exceed 25% Generator voltage does not fall below about 75%

NoTE: Under these conditions, regulators will restore motor voltage to substantially 100% for meeting starting-torque requirements.

	for 100% L	INE VOLTAGE	Min	imum Gen.		
Type of Starter (Settings given are the more common for each type)	Motor Voltage	Available Starting Torque	(otor Hp Rat	(Min. Gen. Kva Full-voltage	
	Rated Voltage	Full-voltage Starting Torque	K=4	K =6	K =8	V Starting Kva
Full-voltage starter.	1.0	1.0	4.0	6.0	8.0	1.0
Autotransformer 80% Tap 65% Tap 50% Tap	0.80 0.65 0.50	$0.64 \\ 0.42 \\ 0.25$	2.7 1.8 1.1	4.0 2.7 1.7	5.3 3.6 2.2	$0.65 \\ 0.45 \\ 0.30$
Resistor starter, single step. (Adjusted for motor voltage to be 80% of line voltage)	0.80	0.64	2.8	4.2	5.6	0.70
Reactor. 50% Tap 45% Tap 37.5% Tap	$0.50 \\ 0.45 \\ 0.375$	0.25 0.20 0.14	2.0 1.8 1.5	3.0 2.7 2.2	4.0 3.6 3.0	$0.50 \\ 0.45 \\ 0.40$
Wound-rotor-motor multistep control. (Starting current limited to 150% of motor rated full-load current. Torque available during acceleration 100%)	1.0			1.0		

 $K = \frac{Motor Full-voltage Starting Current}{V}$

Motor Full-load Current

NOTE: In some cases, when complete data are available, special study may show that satisfactory starting can be obtained using generator sizes smaller than those indicated in this table.

such a problem is solved when a different combination of data is used.

It is desired to start a squirrel-cage induction motor under the conditions listed for Table I and when:

Motor horsepower =20 hp. Full-voltage starting current =330 amp. Motor rated voltage =220 volts, 3 phase. Full-voltage starting torque =150 per cent of full-load, full-speed torque. Starting torque required =100 per cent of full-load, full-speed torque.

Hence: Full-voltage Starting Kva = $\frac{220 \times 380 \times \sqrt{3}}{1000} = 145.$ 1000

Full-voltage Starting Torque $=\frac{100}{150}=0.67$ (minimum allowable).

From the table, it will be noted that a full-voltage starter would result in

Therefore, this type of starter would make adequate starting torque available (after the voltage has returned to normal).

The minimum generator kva is determined as follows from the last column of the table:

```
Minimum Gen. Kva
Full-voltage Starting Kva =1.0.
```

Hence: Minimum Gen. Kva =1.0 ×145 =145.

This use of the last column is seen to be substantially equivalent to the use of the preceding three columns, except that it applies directly when the full-voltage starting kva is known and avoids any assumptions as to the ratio of motor full-load kva to hp.

Example 3

Selection of Type of Motor

It is desired to start a 50-hp, 440-volt, 1800-rpm squirrel-cage induction motor from a 312-kva generator under the conditions for Table I and when:

Starting torque required = 140 per cent of full-load, full-speed torque

The type of motor is selected by successive trials, using Table I as follows:

(1). For the first trial, assume a normal-starting-

GENERAL (B) ELECTRIC

torque, normal-starting-current motor of the given rating. Published data on such a motor reveal that:

Full-voltage starting torque=150 per cent of fullload, full-speed torque and that K = 7.3.

Since for this motor the full-voltage starting torque (150 per cent) is so little in excess of the required starting torque (140 per cent), it is immediately evident that a full-voltage starter should be used. In Table I, this selection is indicated by the fact that, for fullvoltage starting,

Starting Torque Full-voltage Starting Torque =1.0.

The minimum generator kva for this trial selection of motor and starter is determined from Table I in the same manner as was followed in Example 1, except that, in the present example, the value of

Minimum Gen. Kva Motor Hp Rating

for K = 7.3 must be obtained by direct interpolation between the values in the columns headed K=6 and K = 8. Thus, in the present case

 $\frac{\text{Minimum Gen. Kva}}{\text{Minimum Gen. Kva}} = 7.3.$

Motor Hp Rating =7.3. Hence: Minimum Gen. Kva =7.3 ×50 =365.

Since this minimum kva exceeds that which was stated to be available (312 kva), a second trial selection will be made, this time considering a type of motor having a lower starting current.

(2). For the second trial selection, assume a normalstarting-torque, low-starting-current motor of the given rating. For this motor, published data reveal that:

Full-voltage starting torque=150 per cent of full-

load, full-speed torque, and that K = 6.0.

By proceeding in the same manner as was followed in checking the foregoing trial selection (except that, since K = 6.0, no interpolation is necessary), it will be found that, as previously, a full-voltage starter is needed to assure adequate starting torque. However, the minimum generator kva is found to be only 300.

Therefore, the selection of this type of motor satisfies both the starting-torque and the generator-kva requirements.

HOW TO INSTALL MOTORS

WHETHER motors are mounted on machines or as separate drives in the factory, a motor that is convenient to handle and easy to install is a time and money saver. G-E motors have many features that have been thoughtfully included in their design to make the job of installing and starting motors for the first time as easy and convenient as possible—roomy conduit boxes; graphic connection plates; lubrication fixtures; strong, sturdy, closely machined feet; and many others.

Further, each motor is supplied with complete instructions for installing, wiring, and maintenance. The following information is presented as further assistance on the fundamentals of good installation practice for motors. Data are included on:

How to locate and align motors. How to select belts and pulleys. What to consider—individual or group drive.

How to connect motors and what to check before starting motors.

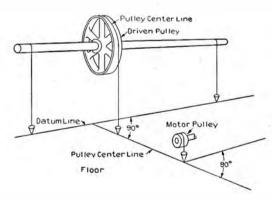
HOW TO LOCATE AND ALIGN MOTORS

When contemplating the installation of motors and control, there are several general points to be considered. The most important items may be summarized as follows:

- 1. Location of the motor.
 - (a) Arrange the drive to conserve floor space.
 - (b) Make the motor and control accessible for inspection and repairs.
- 2. Atmospheric conditions.
 - . (a) See that the motor and control are well ventilated.
 - (b) Do not install a standard motor where the ambient temperature is more than 40 C, or where the normal temperature rise is more than 40 C.
 - (c) If motor or control is subject to extreme conditions of explosive, abrasive, or magnetic dust, dripping water, steam, acid, alkali, or moisture, it must be suitably protected.
- 3. Type of drive—The type of drive selected will restrict the location of the motor and, vice versa, the location of the motor will influence the type of drive selected.
- 4. Build a firm, strong, and rigid support for the motor.

Assuming now that the motor is properly located and the right kind of mounting has been built, the next step is properly to align the machine with its drive.

The tools usually used for aligning motors or lineshafting are the square, plumb bob, and level. Tool manufacturers also build combination squares and levels and similar tools that are a material aid in quickly and accurately aligning machinery.


The first step to be taken when aligning two machines is to see if they are level. It is possible for a machine to be out of line in more than one plane. If, by placing a level or plumb on the machine, it is found

to be out a certain amount, the motor must then be mounted so that it will also be out a like amount.

Belt drive is a common form of mechanical transmission, but the principles involved and the methods used apply, in general, equally well for chain drive.

The illustration below shows a simple and easy method of aligning a motor pulley with the driven pulley. First, the crown or center line of the pulleys must be on the same center line, and, second, the motor shaft must be parallel to the driven shaft.

By using a plumb bob and drawing a datum line on the floor, a base of operation is established. Next, drop a plumb line from the center of the driven pulley to the floor. With a square, draw a line perpendicular to the datum line. Next, drop a plumb line from the center of the motor pulley and move the motor up or back until the plumb bob rests on the center line of the driven pulley. From the pulley center line, perpendiculars may

Method of aligning two pulleys

be drawn through the centers of the holes in the motor feet. A level should be used to see that the line shafting is level. If it is not, then the motor feet must be shimmed up so that the motor shaft and the line shaft will be "out of level" the same amount. Chain drive may be aligned in a similar manner.

GENERAL 68 ELECTRIC

With belt drive, a sliding base is nearly always used to allow for belt adjustment. Another method, therefore, is to use the following procedure when aligning two pulleys.

1. Place the motor on the base so that there will be an equal amount of adjustment in either direction, and firmly fasten the motor to the base by means of the four holding-down bolts.

2. Mount the motor pulley on the motor shaft.

3. Locate the base and motor in approximately the final position, as determined by the length of belt.

4. Stretch a string from the face of the driven pulley toward the face of the motor pulley.

5. Parallel the face of the motor pulley with this string.

6. Using a scratch pin, mark the end positions of the sliding base.

7. Extend these lines.

8. Move the base and motor away from the string an amount equal to one half the difference in face width of the two pulleys. Use the two extended lines as a guide to keep the base in its proper position.

9. The belt should now be placed on the pulleys to see if it operates satisfactorily. If it does not operate properly, the base may be shifted slightly until proper operation is obtained.

10. Finally, firmly fasten the base to the floor, ceiling, or side wall by means of lag screws or bolts.

HOW TO SELECT BELTS AND PULLEYS

APPLICATION OF BELT DRIVE

Where a speed reduction is involved in the transmission of power, and where it is not necessary to maintain an absolutely fixed ratio between driving and driven shaft, belting is usually the best form of drive to employ. It is simple, inexpensive, and efficient (between 85 and 95 per cent); it has the advantage of slipping slightly under heavy overloads; because of its elasticity and slip, it will absorb a portion of the shock of suddenly applied loads, and thus protect to some extent both motor and driven machine. Specially tanned or waterproofed leather belts, fabric belts, and rubber belts may be selected to meet practically any atmospheric conditions.

As indicated above, belting cannot be used where positive drive is imperative, that is, where the relative rpm of driving and driven shafts must remain unchanged. The upkeep for belting is usually higher than for other forms of transmission, though this cost can be materially reduced if the proper quality of belt is used and the belt is properly applied and cared for. The space required is somewhat greater than for some of the other forms of mechanical transmission.

SELECTION OF PULLEYS

Pulley Ratios

1

One of the first points to consider in connection with belt drive is the ratio involved. For good practice the following belt reductions should not be exceeded:

1/15-hp	motor	15 to 1
1-hp	motor	10 to 1
	motor	8 to 1
	motor	6 to 1
	motor	5 to 1
50-hp	motor	4 to 1

NOTE.—The values given above are the limiting values to be used with belting. For output-shaft speeds of 600 rpm and lower, we suggest that gear-motors be considered as offering a more economical, efficient, and generally more successful solution to problems involving low-speed drive.

Pulley Diameters

The following rules are given for determining pulley diameters and speeds:

- 1. Diam of driven pulley = Diam of motor pulley×full-load motor speed in rpm Rev per min (rpm) of driven pulley
- 2. Diam of motor pulley = <u>Diam of driven pulley ×rpm of driven pulley</u> <u>Full-load motor speed in rpm</u>
- 3. Rev per min of driven pulley = <u>Diam of motor pulley×full-load motor speed</u> <u>Diam of driven pulley</u>
- 4. Rev per min of motor = <u>Diam of driven pulley × speed of driven pulley</u> <u>Diam of motor pulley</u>

The above formulas may be applied to any belt drive by substituting the terms "driver" and "rpm of driver" for "motor pulley" and "motor speed."

CAUTION.—The desired driven speed should be increased 2 per cent in above formulas to allow for belt slip.

It is desirable to utilize the standard pulleys furnished with the motors wherever possible. The use of special pulleys on electric motors is limited by mechanical dimensions, and by the permissible bearing pressure, which, for the transmission of a certain horsepower, increases as the pulley diameter decreases. The maximum pulley diameter is determined by mechanical dimensions. These are in addition to the usual requirements of proper belt speed and width to transmit the power involved.

Belt Speed

Belts should not be run at speeds above 5000 ft per min. Above this speed, there is not sufficient friction contact between belt and pulley, because of the effect of centrifugal force tending to "throw" the belt.

Table I on the following page gives the belt speed in feet per minute corresponding to various motor speeds and pulley diameters.

GENERAL 🏀 ELECTRIC

Table I—Belt Speeds

Full-	PULLEY DIAMETERS IN INCHES													
load Speed of Motor in	3 ½	4	412	5	5 1⁄2	6	7	8	9	10	11			
Rpm	Belt Speed in Feet per Minute													
$1750 \\ 1450 \\ 1150$	$1605 \\ 1330 \\ 1055$	$1835 \\ 1520 \\ 1205$	$2060 \\ 1710 \\ 1355$	2290 1900 1505	$2520 \\ 2090 \\ 1655$	$2750 \\ 2275 \\ 1810$	$3205 \\ 2660 \\ 2110$	$3670 \\ 3040 \\ 2410$	$4125 \\ 3420 \\ 2710$	$4580 \\ 3800 \\ 3010$	4170			
860 690 575	790	900 725	$1015 \\ 815 \\ 680$	1130 905 755	$1240 \\ 995 \\ 830$	$1350 \\ 1085 \\ 905$	$1575 \\ 1265 \\ 1055$	$1800 \\ 1445 \\ 1205$	$2030 \\ 1625 \\ 1355$	2255 1810 1505	1990			
Full-		PULLEY DIAMETERS IN INCHES												
load Speed of Motor in	12	13	14	15	16	17	18	19	20	21	22			
Rpm		Belt Speed in Feet per Minute												
$1450 \\ 1150 \\ 860$	$4560 \\ 3615 \\ 2705$	4930 3915 2930	$\frac{4220}{3160}$	$\frac{4520}{3380}$	$\frac{4820}{3610}$	$5120 \\ 3835$	4060	4280	4510	4740	4960			
690 575	$\begin{array}{c} 2170 \\ 1805 \end{array}$	2350 1955	$2530 \\ 2105$	$\begin{array}{c} 2710 \\ 2260 \end{array}$	$2890 \\ 2410$	$\begin{array}{ccc} 3075 & 3250 \\ 2560 & 2710 \end{array}$		$3435 \\ 2860$	$\begin{array}{c} 3615\\ 3010 \end{array}$		3980 3310			
Full-				PULLE	Y DIAM	IETERS	5 IN IN	CHES						
load Speed of Motor in	23	24	25	26	27	28	29	30	31	32	33			
Rpm	Belt Speed in Feet per Minute													
690 575	4160 3460	$\frac{4340}{3610}$	$\frac{4520}{3760}$	4700 3915	4880 4060	$5060 \\ 4210$	4360	4515	4665	4815	4965			
The Belt s	speed	in fe	et pe	r min										

12

Horsepower Transmitted

The pulley must be large enough to transmit the horsepower, which ordinarily will not be the motorhorsepower rating, but a figure somewhat larger, to take care of possible overloads and peak loads. In ordinary applications, 125 per cent of the motor rating may be allowed for a safety factor in the usual sizes of motors.

In general, the product of the diameter and belt width of a special pulley should at least equal the product of the corresponding dimensions of the standard pulley recommended for that size and speed motor. Assuming that the diameters have been tentatively chosen as best for the desired purpose, the horsepower that can be transmitted will depend upon the pulley material, the belt width, its quality and number of plies, the distance between centers, and the relative angular location of the driving and driven pulley.

Table II shows the hp per in. of width transmitted by good leather belting running over paper pulleys with 180-degree arc of contact and no slip. For iron pulleys, multiply figures given by 0.62; for wood pulleys, multiply 0.41. (For belt speeds, see Table I.)

The figures shown in Table II are for "regular" single-ply and double-ply belts. The values for horsepower transmitted by "light" belts will be 80 per cent of values shown, and by "heavy" belts, 115 per cent of values shown.

Table II—Hp Transmitted per Inch of Width— **Leather Belts**

To obtain the horsepower transmitted by belts of any width, multiply the figure shown for the given belt speed by the width of the belt used.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Speed, Ft per	per Inch of	Speed, Ft per	per Inch of	Speed, Ft per	per Inch of	Speed, Ft per	per Inch of
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		Single-pl	y beltin	g		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\begin{array}{c} 2.78\\ 2.92 \end{array}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200	1.67	2300	3.20	3400	4.72	4500	6.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1500	2.09	2600	3.61	3700	5.14	4800	6.68
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1800	2.50	2900	4.03	4000	5.56		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I	Double-p	ly beltin	ıg		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200	2.39	2300	4.57	3400	6.75	4500	8.94
1800 3.58 2900 5.76 4000 7.94	1500	2.98	2600	5.16	3700	7.35	4800	9.53
	1800	3.58	2900	5.76	4000	7.94		

Belt Width

For a given diameter, the minimum belt width is determined by the horsepower to be transmitted; the maximum width is limited by the possible overhang and the safe strain which may be placed on the bearing.

To obtain the belt width necessary to transmit a given horsepower, divide the horsepower which is to be transmitted by the figures given in Table II, if paper pulleys are used. For iron pulleys, multiply the quotient thus obtained by 1.6; for wood pulleys, by 2.4.

Stock sizes of belts increase in width by the following increments:

From $\frac{1}{2}$ - to 1-in. belt width, by $\frac{1}{8}$ in. From 1- to 4-in. belt width, by $\frac{1}{4}$ in. From 4- to 7-in. belt width, by $\frac{1}{2}$ in. From 7- to 30-in. belt width, by 1 in. From 30- to 56-in. belt width, by 2 in. Above 56-in. belt width, by 4 in.

The foregoing represents average practice; stock sizes of different manufacturers may vary slightly from the figures given.

Pulley widths should exceed belt widths by following amounts.

Pulley Diameter	Iron Pulley,	Paper Pulley,
in In.	In.	In.
Under 2	14	14
2 to 5	15	1/2
5 to 10	12	8/4
10 to 20 20 to 24 24 to 36 Above 36)2 34 34 34	1 1 1 2 2

GENERAL A ELECTRIC

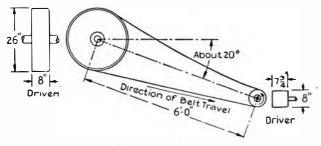
A good handy rule to remember is: A single-ply belt 1 in. wide, running at 1000 ft per min, will deliver approximately 1 hp (up to about 3000 rpm).

Round belts of 0.25 and 0.5 in. diameter are fully equal to single belts of 1 and 3 in. respectively.

Belt Slip

The effect of creepage and slip is to reduce the speed of the driven pulley and, consequently, the power transmitted. For commercial applications, it will be close enough to multiply the calculated speed of the driven shaft by 98 per cent, assuming 2 per cent slip. The diameter of the driven pulley should be slightly smaller than that calculated on the basis of no slip, in order to get a certain speed at the driven shaft. In other words, the speed of the driven shaft is reduced by slip unless compensated for by reducing the driven-pulley diameter a proportionate amount.

A small amount of belt slip is not harmful, but excessive slip is. Severe slippage burns the belt, quickly destroying its usefulness, while, at best, the belt surface is polished, so that the grip on the pulley is materially reduced. Belt slip can be detected by noting the condition of the pulley surface. When the belt is slipping, the pulley will have a very shiny appearance, as contrasted with the smooth, but rather dull, appearance it should have.

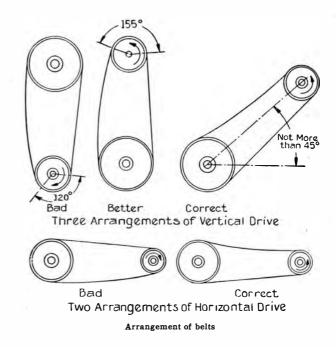

Excessive slip is caused by poorly designed drives, where the driving pulley is too small or the load too great; by running the belt too loose; or by not giving proper attention to the care of the belt.

Arc of Contact

One of the factors affecting the amount of power that can be transmitted by a belt of given width is the arc of contact (the distance the belt wraps around the pulley). As this arc of contact decreases, the belt width must be increased to transmit the same horsepower with 2 per cent slip; Table II, however, allows a factor of safety sufficient to take care of installations which are in accordance with the recommendations for belt ratios and center distances given in this article. If it is necessary to exceed the limits given, it may be necessary to use a belt tightener.

ARRANGEMENT OF BELTS AND PULLEYS Direction of Drive

Horizontal drives are best. Under these conditions with the *lower* side of the belt driving, the sag of the upper side tends to increase the arc of contact. This sag should be about $1\frac{1}{2}$ in. for every 10 ft of center distance between shafts. If too loose, the belt will have



Typical sketch of belt layout

GENERAL GENERAL

an unsteady flapping motion which will injure both belt and machinery; if too tight, the bearings will be worn and the belt quickly destroyed.

Vertical drives, the mounting of one pulley above another, should be avoided. This is particularly true where the lower pulley is the smaller.

The effective tension and arc of contact are reduced in vertical drives so that the normal load cannot be carried. It is better if the angle of the belt with the floor does not exceed 45 degrees. Where several belts transmit power from a line shaft, it is advantageous, where possible, to locate the line shaft so that the bearing pressures can be equalized and reduced by alternating the direction of drive, first on one side, then on the other.

Center Distances

A short center distance is bad for two reasons: it means a shorter belt, so that flexure occurs at each cross section more frequently; the arc of contact on the smaller pulley frequently becomes so small that power can no longer be effectively transmitted. Two and a half times the diameter of the larger pulley should be the minimum center distance, with from three to five a better figure.

BELT TENSION

The belt tension should be slightly more than just enough to avoid belt slip on starting. Excessive belt tension puts abnormal load on the motor bearings and may cause bearing failure. New belts will generally be put on tighter, to compensate for the belt stretch obtained during the first few days of operation. A good check of belt tension is to put approximately ten pounds' pressure on the top of the belt, midway between the pulleys. With this pressure, the belt would be deflected approximately half an inch for short-center drives and three quarters of an inch for longer belt centers.

WHAT TO CONSIDER-INDIVIDUAL OR GROUP DRIVE

It is the purpose of this discussion to assist those contemplating the use of electric drive in arriving at a decision as to whether individual or group drive is the better for a given application. Unbiased transmission engineers hold the opinions that:

- 1. No hard-and-fast rules favoring one method or the other for every application can be made.
- 2. The particular factors involved are peculiar to each application and not common to all.
- 3. Each case should be decided only after carefully weighing the advantages and disadvantages of each method for that particular application.

For example, there may be a saving in operating expense with individual drive, which must be weighed against a possible saving in initial cost with group drive.

The problem of making a proper choice between the two methods is often obscured by the fact that, in existing installations, the types and sizes of motors or of transmission equipment have not always been correctly selected or properly installed. Neither type of drive will be fully successful unless carefully engineered. In the following discussion, it is assumed that equal engineering skill has been brought to bear on both sides of the question.

INITIAL COST

There is no doubt that considerable saving in the initial cost of the motor equipment can usually be made with group drive. For sizes below 5 hp, the cost per horsepower is greater than for the larger sizes. In general, a saving in investment will be realized with group drive:

- (a) Where there are compact groups of constantspeed machines which will be required to run continuously or simultaneously.
- (b) With compact groups of machines which, because of their diversity factor in operation, may be driven by a single motor of much smaller rating than the combined capacities of the motors required for individual drive.

That is, it is seldom that all machines in a group will be fully loaded at the same time, and a motor capable of carrying the average load of the group may therefore be selected, its overload capacity being sufficient to care for any short-time overload conditions.

- (c) With groups of constant-speed machines, where heavy peak-load demands might require individual motors of a size considerably in excess of the average running load.
- (d) When the motors required for individual drive are small.
- (e) In changing over existing installations, where the line shafting is already installed.

Under certain conditions, however, the initial cost will usually be less with individual drive:

(a) Where machines are isolated, requiring long lines of shafting to combine with other groups, so that the cost of the transmission more than offsets the extra expense of individual motors. (b) Where the roof construction will not safely support line shafting, or where the additional expense of making it sufficiently strong would be too great. Occasionally, it is possible to mount the line shafting on the ceiling of the room below and drive up through the floor. The holes cut through the floor to accomplish this purpose weaken the floor and increase the fire hazard so that this scheme is inadvisable; while on the first floor, with no basement underneath, it is impossible.

OPERATING COST

Unless carefully maintained, the transmission equipment will decrease in efficiency on account of gradual misalignment of shafts, increased belt slippage, etc. These losses may be offset, in part at least, by the fact that the efficiency of a motor of large size used with group drive is better than that of the small-size motors used with individual drive.

There may be a power saving in favor of group drive:

- (a) In shops where a maximum demand charge is made, based on the horsepower of the connected load.
- (b) Where the efficiency and power factor (if there is a power-factor penalty clause) are high because of a nearer approach to full-load conditions.

This point is usually overstressed, as there are many plants equipped with individual drive with a power factor of around 80 per cent, while, in many plants with group drive, the power factor is low. In lining up machines for group drive, the assumption is automatically made that each of the machines will be operated most of the time, although probably not at capacity. There are many times, however, when possibly only two or three machines out of a group of six or eight are actually operating simultaneously.

There would be a power saving in favor of individual drive:

- (a) Where many machines operate intermittently or at infrequent intervals.
- (b) Where much overtime work involving only a few machines is carried on.
- (c) Where long lines of shafting cause large transmission losses which can be eliminated by substitution of individual drive.

PRODUCTION

In many installations it is possible to increase production with individual motorized drive:

- (a) By the use of individual magnetic control, whereby the workmen may remain in position to observe the progress of the work and, at the same time, have full control over the driving equipment.
- (b) Where it is desired to obtain elaborate or specialized control, which may be expensive, cumbersome, or inefficient to accomplish by mechanical means. A good example of such a condition is in printing-press drive.

GENERAL BELECTRIC

(c) By closer regulation of speed, through elimination of belt slip.

Every successive belt through which power is transmitted in group drive usually results in a drop in speed. In laying out installations, reasonable allowance is made for this slip, but, unless considerable attention is paid to maintenance of shaft alignment, belt tension, and load conditions, machines will frequently be found running under speed after being in operation any considerable length of time.

- (d) Where some considerable portion of the time is required in set-up work, taking advantage of the more flexible control possible with an individually motorized equipment.
- (e) Through less wholesale interruptions due to breakdowns. Many times, with individual drive, production may be temporarily diverted to other machines; with group drive, several machines are affected.
- (f) Where arranging machines in line for line-shaft drive does not allow a logical arrangement of machines for production purposes. This is particularly important where a rearrangement of the machines is necessary from time to time to keep step with changing conditions.
- (g) Where the size of the work is such that it is easier, or necessary, to use portable tools. In these cases, the tool is moved to the work, and a number of set-ups and changes in position of a large casting are avoided.
- (h) By using certain special tools and motors particularly designed for specialized work.

The high-speed motors used in woodworking and grinding machinery are very good examples of this. Belt speeds in excess of 6000 ft per minute would often be necessary, which would result in very unsatisfactory operation. The combination of a fairly large amount of power per spindle and a very high speed is met here by individually motorized spindles, as well as by individually motorized machines.

WORKING CONDITIONS

It is generally admitted that working conditions are inherently better with individual drive than with group drive.

- (a) There is less danger, particularly for the maintenance men, from belting, shafting, etc.
- (b) The psychological effect of working near rapidly moving belts and pulleys is unquestionably bad, and has a tendency to increase fatigue, with consequent harmful effect on precision work.
- (c) Better light and circulation of air are obtained. Lighting conditions are particularly important where artificial light is required, and overhead belting and shafting practically preclude the shadowless lighting so necessary to safety and to accurate work.
- (d) There is no danger of belts working from loose to tight pulleys, causing unexpected starting of machines.
- **GENERAL** S ELECTRIC

(e) In many cases, manipulation of the driven machine can be made safer for the operator.

Good examples are emergency stop-stations, located at important points about a machine where hazardous operations are performed; "safety-first" switches which may be locked in the "off" position, preventing their operation by unauthorized persons.

QUALITY OF PRODUCT

The effect of overhead shafting and rapidly moving belts and pulleys on precision work is discussed above under "Working Conditions."

There are other ways in which individual drive aids towards a product of better quality.

- (a) Where the more precise speed maintenance results in a more uniform product (as in some textile, most grinding, and many woodworking operations).
- (b) Where the product requires conditions of exceptional cleanliness, which are difficult to obtain with overhead shafting and belts.

MISCELLANEOUS CONSIDERATIONS

Under some circumstances, the use of group drive is almost automatically ruled out by the construction of the building or the nature of the work. Such conditions are found:

- (a) In plants where fairly heavy work is done, requiring clear overhead space for traveling cranes. The convenience, and often the necessity, of this moving material will offset any advantages group drive may otherwise have.
- (b) Where machines are installed under galleries where there is not sufficient overhead room for line shafting.
- (c) Where automatic or remote control of a machine is desired, e.g., control for a pressure tank or sump pump.
- (d) In plants where periodic tests are made on each machine to determine the amount of power being used. With individual drive and jacktype switches, such tests may be made without stopping a single machine; with group drive, a shutdown of all machines in the group would be necessary before completing the test.

SUMMARY

In general, it may be said that any compact group of machines which may be equipped with a motor of considerably smaller capacity than the combined capacities of the motors required for individual drive should be considered for group drive; any machine operating at a fairly constant load, not much below its maximum, should be equipped with individual drive.

The cost of maintenance will be little different as between the two methods. Whatever is saved on motor maintenance with group drive because of fewer and possibly more accessible motors, is likely to be used up in maintaining and inspecting line-shaft bearings, belts, pulleys, clutches, etc. All power costs, including fixed charges, rarely make up more than 3 or 4 per cent of the cost of the finished product. Therefore, any savings along these lines, while not to be overlooked, are not relatively as important as some of the other factors.

The question of production is far more important.

Any means whereby production can be increased, by speeding up the process, conserving the workmen's time, locating machines for improved sequence of operation, or making handling of the material easier, will in practically every instance overrule all other factors.

HOW TO CONNECT MOTORS AND WHAT TO CHECK BEFORE STARTING

A little extra care at the time of installation is a good investment. For example, trouble may be avoided by a look at the brushes of a direct-current or single-phase repulsion motor to make sure that they are seating properly on the commutator, and with the proper pressure. It is also always good practice to turn the motor over by hand before applying power for the first time, to be sure that it turns freely and that no foreign materials or objects have fallen into the motor during shipment or handling.

Lubrication

Many fractional-horsepower motors have waste-packed bearings with a full charge of oil in them when shipped. Integral-horsepower motors (one-horsepower and larger) are usually shipped without oil in the bearings. These are normally equipped with an oil filler gage shown at the right, which should be

approximately three quarters full of oil with the motor stopped. In every case, make sure that the motor has its proper supply of bearing oil before power is applied.

For average indoor temperatures, a good grade of mineral oil with a viscosity (resistance to flowing) of 250 to 350 seconds Saybolt at 100 F should beused. However, oil with a viscosity of 150 to 200 seconds Saybolt at 100 F may be used for motors which are coupled directly to the load, having speeds between 1500 and 3600 rpm with possibly lower bearing temperatures. (For convenience, the above viscosities correspond respectively to SAE No. 20 and SAE No. 10.) Turbine oil should be used, not automobile oil.

Integral-horsepower polyphase and direct-current motors are often equipped with oil-ring bearings. When a motor with this type of bearing is first started, each bearing should be checked immediately, through the inspection opening shown above, to make sure that the ring is turning.

Ball-bearing housings are generally packed with grease when shipped, and hence require no lubrication at the time of installation. See "How to Grease Ball Bearings" on page 134 for information on maintenance of lubrication.

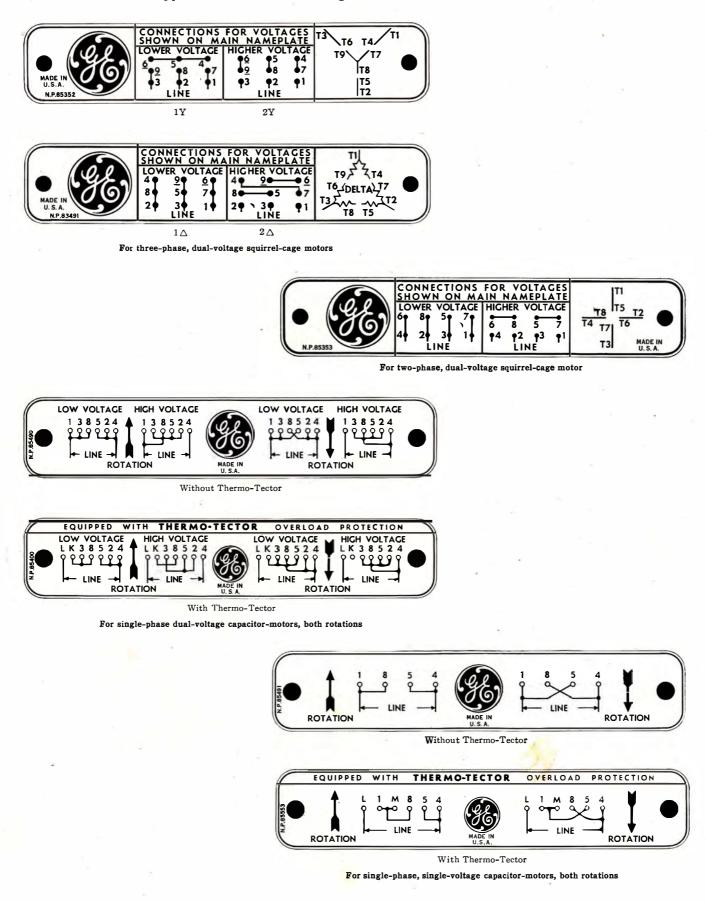
Pulley

Severe pounding, to drive a pulley or coupling on the motor shaft, may cause a bent shaft or damage to the bearings. A little care in removing paint from the shaft and light filing of any rough spots on the shaft, key, and pulley bore should eliminate the need for any severe pounding.

Electric Connections

On smaller motors, it is sometimes good policy to make the electric connections to the motor before bolting it into place. Thus, if any loose part falls into the motor, it may be easily removed. All connections should be made tightly enough so that the vibration of the equipment will not be able to loosen them. Wires joined in a conduit box should be either twisted together and soldered, or bolted together. These joints should be wrapped first with rubber tape, and then with friction tape. Wires issuing from a conduit box, especially rubber-covered extension cords, should be held in some way so that there is no strain on the connections themselves. Usually a knot in the wire inside the conduit box, or the use of conduit-box fittings that grip the wire where it leaves the box, are the most convenient ways to obtain this strain relief. Many fractional-horsepower motors are equipped with terminal boxes that are made so that they will grip the wires issuing from them.

It is good practice to check the motor nameplate to make sure that the motor has the correct horsepower, voltage, and frequency rating for the job. The nameplate stamping should agree with the power supply available. If the motor is rated for two voltages, it is well to check that it is connected for the proper voltage. The proper connections may be shown on a motor terminal plate, in a diagram on the inside of the conduit-box cover, or in the instruction book that accompanies the motor. Typical connection diagrams are illustrated on the page following.


All motor and control wiring should be installed carefully in accordance with the National Electrical Code and any local requirements, and should have sufficient capacity to carry the full-load current with a maximum voltage drop of 2 per cent of the line voltage. Motor frames should be grounded in accordance with the Code.

Starting

Leave the motor disconnected from the load for the initial start, if possible, particularly if direction of rotation is important to the driven apparatus. It is desirable to operate the motor without load for about an hour, if possible, to test for an unusual localized heating of the bearings or windings.

If direction of rotation is wrong, the instruction sheet accompanying the motor usually gives full instructions on how to correct. For three-phase motors, reverse any two leads. For two-phase motors, interchange lines of either phase.

GENERAL 🋞 ELECTRIC

GENERAL ELECTRIC

HOW TO SERVICE MOTORS

E LECTRIC motors have been made such reliable, faithful servants of industry that it is easy to forget them and to trust they will continue running without attention.

To follow such a policy, however, accelerates depreciation of investment and builds up possibilities of costly production interruptions. It is a relatively simple and profitable matter to service regularly the motors in your plant.

What to do? Establish a system for servicing. Regularly inspect each motor. Keep a record of its operation and the service given it. Check its mounting, coupling or belts, its temperature and current, its bearings and lubricant. Keep it clean inside and out. And, every once in a while, send it to a service shop for general overhaul. This will pay dividends in lower operating costs, longer useful motor life, and few, if any, repair-parts costs.

In addition to building-in servicing conveniences on G-E motors, instructions are given with each motor. Available for service are G-E Record Cards. These can be had *free* for the asking. Just write the nearest G-E service shop or office for card No. GES-1526, stating how many motors you have.

The following sections are presented as a further help in keeping motors running the longest time:

General Inspection.

How to Lubricate Motors.

How to Grease and Clean Ball-bearing Motors.

Additional Care for D-c Motors. General Overhauling of Motors. How to Care for Insulation.

GENERAL INSPECTION

The purpose of maintenance work is to insure continuous satisfactory operation of the equipment. It is important, therefore, in such work that all possible causes of future trouble be found and corrected. The inspection of the motor should be made with particular attention to minor weaknesses which may be indications of future trouble.

Become acquainted with the sounds made by a motor when it is starting, running, and stopping correctly. As part of the maintenance inspection, note the sounds made by the motor under these conditions. Rough commutators, faulty operation of centrifugal mechanisms on single-phase motors, dry bearings, and many other faults can be detected by "educated" ears.

Make sure that the motor mounting bolts are all tight. A loose mounting bolt can cause considerable noise and a service call. Check the motor pulley setscrews. Loose pulley setscrews can result in the pulley "creeping" off the motor shaft, with possible damage to the condenser. Sometimes pulleys creep even with tight setscrews. In such cases, the trouble probably comes from the use of only one setscrew, an oversize pulley bore or keyway, or a loose key.

In a similar way, the senses of smell, sight, and touch can give warning of possible faulty operation. For example, overheated insulation has a peculiar sharp odor—easily identified if one is acquainted with it. Noticing this, you can check the causes of overheating more carefully. A quick glance at a motor arranged for automatic belt tightening will show if the belt has stretched enough to require adjustment of the motor away from the driven machine. Feeling of the motor and its bearings may lead to a check on overheating. This will only be an indication—excessive heating should be checked with a thermometer.

When servicing a motor, go over it with a dry cloth so that its continued, bright, new appearance will be a credit to your plant.

A guideformaintenance, in abbreviated form, follows: 1—Check lubrication, and oil motor.

- 2—Inspect brushes, brush contact surfaces, and brush springs.
- 3—Inspect commutator.
- 4—Check the machine operator on his experience with motor since your last inspection.
- 5—Look, listen, smell, and feel for indications of possible trouble, with the motor starting, stopping, running, and standing still.
- 6-Clean the condenser.
- 7—Wipe off the motor.

HOW TO LUBRICATE MOTORS

The designs of bearings and bearing housings of motors have been wonderfully improved in the past few years. The point has now been reached where the bearings of modern motors, whether sleeve, ball, or roller, require only very infrequent attention.

This advance in the art is not yet fully appreciated, for, while there may have been some necessity for more frequent attention in the case of older designs with housings less tight than on modern machines, oiling and greasing of new motors is quite often entrusted to uninformed and careless attendants, with the result that oil or grease is copiously and frequently applied to the outside as well as the inside of bearing housings. Some of the excess lubricant is carried into the machine and lodges on the windings, where it catches dirt and thereby hastens ultimate failure.

If the proper amount of a suitable lubricant is applied before starting, there should be no need to refill the housings for several months, even in dusty places.

GENERAL 🍘 ELECTRIC

How to Grease Ball-bearing Motors*

Equipped with Pressure-relief Greasing System

Determining the correct amount of lubricant in ball bearings is one of the most important problems in motor maintenance. Too much lubricant in these bearings can cause heating and other bad effects, just as will too little lubrication. Many motors have ball bearings arranged to be greased with a pressure gun. The following procedure, developed by General Electric and based on several years' experience, has been used with excellent results on such motors. Preferably, motors should be greased while they are in operation.

Only a high grade of grease, having the following general

- characteristics, should be used for ball-bearing lubrication:
 - 1. Consistency a little stiffer than that of vaseline, maintained over the operating-temperature range.
 - 2. Melting point preferably over 150 C.
 - 3. Freedom from separation of oil and soap under operating and storage conditions.
 - 4. Freedom from abrasive matter, acid, and alkali.

For the convenience of G-E motor users, General Electric can supply the proper grease in cans of convenient sizes or in drums.

 Make sure that no dirt gets into the bearing with the grease—wipe pressuregun fitting, bearing housing, and relief plug clean.

2. Þ

Always remove the relief plug from the bottom of the bearing before using the grease gun. This prevents putting excessive pressure inside the bearing housing which might rupture the bearing seals.

 With a clean screw driver or similar
 tool, free the relief hole of any hardened grease, so that any excess grease will run freely from the bearing.

4.

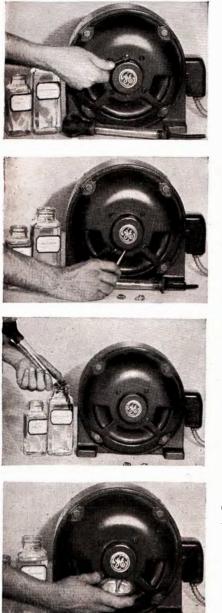
With the motor running, add grease with a hand-operated pressure gun, until it begins to flow from the relief hole. This tends to purge housing of old grease. If it might prove dangerous to lubricate the motor while running, follow this procedure with the motor at standstill.

 Allow the motor to run long enough after adding grease to permit the rotating parts of the bearing to expel all excess grease from the housing. This very important step prevents overgreasing the bearing.

6. 🕨

Stop the motor and replace the relief plug tightly with a wrench.

* For all motors where relief plug is not accessible, this procedure may be slightly modified. See Publication GEJ-942.


GENERAL 🛞 ELECTRIC

How to Clean Ball Bearings on Motors*

Equipped with Pressure-relief Greasing System

The pressure-relief method of greasing motors on the preceding page tends to purge the bearing housing of used grease. Complete cleaning of bearings, therefore, is required at infrequent intervals only. When the motor is disassembled for overhauling, it is easy to wash the bearings with a grease solvent, such as carbon tetrachloride. When the bearings are not disassembled, they can be cleaned by the following method.

For a thorough and convenient flushing, use some solvent, such as a light mineral oil heated to a temperature of 165 F, or carbon tetrachloride. The latter is noninflammable, does not require heating, and dissolves grease more quickly than hot oil. When using carbon tetrachloride, however, be careful to remove all traces of it from the bearing housing and do not allow it to remain in contact with insulated windings in case

- Wipe clean the housing, pressure-gun, and relief fittings, and then remove both fittings. Every care should be taken to keep dirt out of the bearings, both when greasing and cleaning them. A bit of abrasive once in a bearing may not be removed even with the most thorough cleaning. Afterwards, it may become dislodged and get between the bearing surfaces with serious results.
 - With a clean screw driver or a similar tool, free the pressure-fitting hole in the top of the bearing housing of hardened grease.
- Also, free the relief-plug hole in the bottom of the housing from old grease to permit easy expulsion of the old grease during the cleaning process after the solvent is added.
 - Fill a syringe with grease solvent and inject some of it into the bearing housing through the pressure-fitting hole, while the motor is running.
- As the grease becomes thinned by the solvent, it will drain out through the relief hole. Continue to add solvent until it drains out quite clear.
- Replace the relief plug and inject solvent until it can be seen splashing in the filling hole. Allow the solvent to churn for a few minutes. Remove relief plug and drain. Repeat the churning operation until the solvent runs clean.

of accidental splashing. Also, be careful of the toxic fumes of carbon tetrachloride.

This method permits the cleaning of all standard motors operating at an angle not exceeding 15 degrees from the horizontal (except totally enclosed, fan-cooled motors) without disassembly. The bearings and housings of vertical motors cannot be cleaned, except by a complete motor disassembly.

For totally enclosed, fan-cooled motors, the bearing at the pulley end may be flushed as described. To clean the fan-end bearing, first remove the fan cover and fan in order to make accessible the drain plug at the bottom of the housing. This procedure can be conveniently carried out whenever a general reconditioning of the motor is made.

7. 🔺

If carbon tetrachloride has been used for flushing, replace the relief plug and inject a small amount of light lubricating oil. Allow it to churn for a minute or two before draining off. This will flush out the solvent. To complete the job, grease the bearing, using the method previously described.

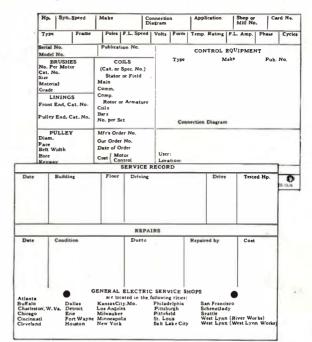
* For all motors where relief plug is not accessible, this procedure may be slightly modified. See Publication GEJ-942.

GENERAL 🛞 ELECTRIC

OILING SLEEVE BEARINGS

The simplest, and most important, part of motor maintenance is lubrication. The type of oil has been covered under "What to Check before Starting," page 131. Check the oil level, on motors equipped with an oil filler gage on the side of the bearing housing, with the motor stopped. The oil filler gage should be approximately three quarters full. Is the oil dirty? If so, drain it off by removing the drain plug, usually located in the bottom or side of the bearing housing. Then flush the bearing with clean oil until the outcoming oil is clean. In fractional-horsepower motors, there may be no means of checking the oil level, as all the oil may be held in the waste packing. In such cases, a good general rule for normal motor service is to add thirty to seventy drops of oil at the end of the first year and to re-oil at the end of each subsequent one thousand hours of motor operation.

Most fractional-horsepower motors built today require lubrication about once a year. Small fan and agitator motors will often require more frequent lubrication, with three-month intervals between oilings as a fair general guide. Motors rated one horsepower and larger will require lubrication about every six months under ordinary operating conditions. In all cases, it will be desirable to check the motor lubrication more frequently when such procedure is conveniently possible, especially during the first few weeks of operation.


CLEANING SLEEVE BEARINGS

Sleeve-bearing housings are provided with liberal settling chambers into which dust, dirt, and oil sludge collect. The only cleaning necessary is to remove the drain plug and drain the oil, which will flush out most of the settled material with it.

NOTE: Frames 203, 204, 224, and 225 do not have drain plugs, and may be flushed through the

oil filler gage. After draining, seal the threads of the drain plug with an oil-sealing compound (such as G-E No. 1201 Glyptal), and refill the oil reservoir.

Whenever the motor is disassembled for general cleaning, the bearing housing may be washed out with a solvent such as carbon tetrachloride. Dry the bearing lining and cover the shaft with a film of oil before assembling.

Card records on every motor in the plant save money. Recordings made after inspection and service indicate any motor requiring excessive expense, and causes can be corrected before an emergency occurs.

ADDITIONAL CARE FOR D-C MOTORS

To insure efficient operation and maximum production, inspection and servicing should be systematic. Frequency of inspection and degree of thoroughness vary, and will have to be determined by the maintenance engineer. They will be governed by (1) the importance of the motors in the production scheme (that is, if the motor fails, will the "whole works be shut down"?), (2) percentage of time the motor operates, (3) nature of service, (4) environment.

Brush inspection is important. The first essential requirement for the satisfactory operation of brushes is free movement of brushes in holders. Uniform brush pressure is necessary to assure equal current distribution. Adjustment of brush holders should be set so that the face of the holder is approximately $\frac{1}{8}$ inch up from the commutator; any distance greater than $\frac{1}{8}$ inch will cause brushes to wedge, resulting in chattering and excessive sparking.

It is essential that the correct grade of brush for a specific application be used, and recommendation as to the correct grade of brush should be obtained from the motor manufacturer only. Broken brushes imply two possibilities: incorrect brush grade, or mechanical defects (such as unbalanced or eccentric commutator). To eliminate brush breaking, both factors should be corrected.

Check the brushes to make sure that they will not wear down too far before your next inspection. Keep an extra set of brushes available, at the installations or in the service truck, so that replacement can be made when needed. Sand in new brushes, and run the motor without load as long as possible, as covered under "Installation." It is false economy to use brushes down to the absolute-minimum length before replacement. Cases have been known where brushes have worn down until the metal, where the pigtail connects to the brush, was touching the commutator. This, of course, was causing damage to the commutator.

Make sure that each brush surface, in contact with the commutator, has the polished finish that indicates good contact and that the polish covers essentially

GENERAL 🋞 ELECTRIC

all of this surface of the brush. Check the freedom of motion of each brush in the brush holder. When replacing a brush, be sure to put it in the same brush holder and in its original position. It has been found helpful to scratch a mark on one side of the brush, when removing it, so that it will be replaced properly.

Check the springs that hold the brushes against the commutator. Improper spring pressure may lead to commutator wear and excessive sparking. Excessive heating may have annealed the springs, in which case they should be replaced and the cause of heating corrected. Larger motors have means for adjusting the spring pressure. The pressure should be 2 to $2\frac{1}{2}$ lb per sq in. of area of brush contact with the commutator.

Commutator

Inspect the commutator for color and condition. It should be clean, smooth, and a polished-brown color where the brushes ride on it. A bluish color indicates overheating of the commutator. Roughness of the commutator should be removed by sandpapering or stoning. Never use emery cloth or an emery stone. For this operation, run the motor without load. If sandpaper is used, wrap it partly around a wood block. The stone is essentially a piece of grindstone, known to the trade as a commutator stone. Press the stone or sandpaper against the commutator with moderate pressure with the motor running without load, and move it back and forth across the commutator surface. Use care not to come in contact with live parts. If the commutator is very rough, the armature should be taken out and the commutator turned down in a lathe. When this is done, it is usually necessary also to cut back the insulation between the commutator bars slightly. After turning down the commutator, the brushes should be sanded and run in as described previously. This is not necessary after light sandpapering or stoning. Motors which raise the brushes after starting may be considered satisfactory with somewhat poorer appearance of commutators and brushes than should be expected where the brushes ride the commutator continuously.

If the commutator is found to be dirty, when the motor is inspected, it should be wiped clean with a piece of canvas or other cloth that is free from lint.

GENERAL OVERHAULING OF MOTORS

Motors should generally be given a thorough overhauling at intervals of five years or so. Such a practice should be beneficial in avoiding breakdowns and in extending the useful life of the equipment. Where periodic overhauling is practiced, the following notes may be helpful.

The motor air gap, between the rotor and stator, is checked with feelers for uniformity. Small clearance at the bottom may indicate worn bearings. When the air gap of a sleeve-bearing motor, as measured with a tapered air-gap gage, is less than the minimum value given in the table below, the bearing linings may need replacement:

Approximate Minimum Air Gap

Frame Number	Minimum Air Gap in In.	
203 to 326 incl	0.008	
364 to 559 incl	0.014	
561 to 579 incl	0.020	

The motor is taken apart and inspected thoroughly. Measurement of the bearings and journals may indicate need for new bearing linings. The waste is removed from waste-packed bearings and rearranged, or replaced, so that any glaze on the wool is removed from its point of contact with the shaft. Any gummy deposit on the wool indicates that the wool should be replaced. All lubricant should be cleaned out of the bearings and a fresh supply put in when the motor is reassembled.

Carbon tetrachloride, or any of the several available nonexplosive cleaning solvents, should be used in cleaning the rotor and stator, to avoid explosion and fire hazards. Note particularly that these solvents are heavier than air, so that there is danger of suffocation to men using them. They should be used in the open air or where there is exceptionally good ventilation.

The rotors should be cleaned with a solvent to remove any accumulated dirt, after which any rust should be removed with fine sandpaper (not emery paper). When clean and dry, the rotors should be coated with a good grade of clear varnish or lacquer to protect them from moisture. To prevent injury to the bearings, they should be completely protected with a clean rag when the motor is disassembled.

The rotors of wound-rotor motors should be given the same treatment as the stators. In addition, soldered joints and binding cords should be inspected and any weakness remedied. Commutators should be turned down and the insulation between segments cut back, with a narrow hack-saw blade or file, to a depth of approximately 0.020 in.

The stator bore should be cleaned of dirt with a solvent, and any rust should be removed with fine sandpaper (not emery paper). Care should be taken during this operation not to damage the top sticks or end turns of the stator winding. When dry, any remaining dirt in the bore should be wiped out with a cloth or brushed out with a soft brush. A hand bellows or dry compressed air at low pressure (25 to 50 lb) may be used, but care should be exercised not to blow dirt or chips into the stator winding.

Motors in Transit, in Storage, or Idle

Motors should be stored in a dry, clean place until ready for installation. Heat should be supplied, especially for large high-voltage machines, to protect against alternate freezing and thawing. This is equally applicable to spare coils.

Motors that have been long in transit in moist atmosphere, or have been idle for an extended period without heat to prevent the accumulation of moisture, should be thoroughly dried out before being placed in service. Machines may also become wet by accident, or they may "sweat" as a result of a difference in their temperature and that of the surrounding air, just as cold-water pipes "sweat" in a warm, humid atmosphere. This condition is, of course, very injurious and should be prevented, particularly in the case of large or important motors, by keeping them slightly warm at all times. Current at a low voltage can be passed through the windings, electric heaters can be used, or even steam pipes can be utilized for protective purposes. In the case of extended idle periods, tarpaulins may be stretched over the motor and a small heater put inside to maintain the proper temperature.

Drying Out

If a motor has become wet from any cause whatever, it should be dried out thoroughly before being operated again. The most effective method is to pass current through the windings, using a voltage low enough to be safe for the winding in its moist condition. For 2200-volt motors, 220 volts is usually satisfactory for circulating this drying-out current. Thermometers should be placed on the windings to see that they are being heated uniformly. Temperatures should not exceed 90 C (Class A insulation). Applying the heat internally in this manner drives out all moisture, and is particularly effective on highvoltage motors, where the insulation is comparatively thick.

Heat may be applied externally by placing heating units around or in the machine, covering with canvas or otherwise enclosing it, leaving a vent at the top to permit moisture to escape. In doing this, it is essential that there be a circulation of warm air over all the surfaces to be dried. The air should be allowed to escape as soon as it has absorbed moisture. Therefore, the heaters should be so placed and baffles so arranged as to get a natural draft; or small fans may be used to force circulation. Twelve-inch fans set to blow air across the fronts of "glow heaters" and then into the lower part of a machine from opposite sides, and so on up around the windings and out the top, will produce excellent results. The temperature of the winding should not be allowed to exceed 100 C for Class A insulated motors. Smaller machines may conveniently be placed in ovens, the same temperature limits being observed.

Insulation Resistance Tests

The time required for complete drying-out depends considerably on the size and voltage of the motor. Insulation resistance measurements should be taken at intervals of four or five hours until a fairly constant value is reached. This value should at least equal the recommended AIEE standard, which is Rated Voltage of the Machine

$$Megohms = \frac{Rated Voltage of the Walthing Rating in Kva$$

The insulation resistance of dry motors in good condition is considerably higher than this value.

A more convenient way to measure this resistance is through the use of a megohmmeter, although if a 500-volt d-c source is available, readings can be taken with a voltmeter. The ungrounded side of the system should be connected to all the motor terminals through the voltmeter, the opposite or grounded side being connected directly to the motor frame. The insulation resistance is found by

$$R = r \left(\frac{E}{V} - 1\right)$$

where R = insulation resistance in ohms

E =line voltage (d-c)

V = voltmeter reading

r = resistance of voltmeter.

In using the voltmeter method, the connection to the frame should always be made through a fuse of not more than 10 amperes in size. The circuit should be tested, and the side showing a complete or partial ground then connected to the frame through the fuse.

Obviously, the insulation resistance varies over a wide range, depending upon moisture, temperature, cleanliness, etc., but it is a good indication of the general condition of the insulation and its ability to stand the operating voltage. Such readings should be taken before a high-potential test, to determine whether the insulation is ready for such a test, and afterwards to make sure that the high potential has not injured the insulation.

High-potential Tests

High-potential tests should be made after drying out, or after repairs, to check the dielectric strength of the insulation. New windings should successfully stand a high-potential test of twice normal voltage plus 1000. Motors that have been in operation for some time should be tested, *after thorough cleaning and drying*, using a voltage of about 150 per cent of normal voltage, applied for one minute. Small high-potential testing sets are available for such work and are of such capacity that very little damage will result from a breakdown during the test.

Periodic Inspection

A systematic and periodic inspection of motors is necessary to insure best operation. Of course, some machines are installed where conditions are ideal, where dust, dirt, and moisture are not present to an appreciable degree; but most motors are located where some sort of dirt accumulates in the windings, lowering the insulation resistance and cutting down creepage distances. Steel-mill dusts are usually highly conductive, if not abrasive, and lessen creepage distances. Other dusts are highly abrasive and actually cut the insulation in being carried through by the ventilating air. Fine cast-iron dust quickly penetrates most insulating materials. Hence the desirability of cleaning the motors periodically. If conditions are extremely severe, open motors might require a certain amount of cleaning each day. For less-severe conditions, weekly inspection and partial cleaning are desirable. Most machines require periodically a complete overhauling and thorough cleaning.

For the weekly cleaning, the motor should be blown out, using moderate-pressure, dry, compressed air (or about 25 to 30 lb per sq in. pressure). Where conducting and abrasive dusts are present, even lower pressure may be necessary, and suction is to be preferred, as damage can easily be caused by blowing the dust and metal chips into the insulation. On most d-c motors and large a-c motors, the windings are usually fairly accessible, and the air can be properly directed to prevent such damage.

On the larger a-c machines, the air ducts should be blown out so that the ventilating air can pass through as intended.

On large machines, insulation resistance readings should be taken in the manner heretofore indicated. As long as the readings are consistent, the condition of the insulation would ordinarily be considered good. Low readings would indicate increased current leakage to ground, or to other conductors, owing to one of perhaps several causes, such as deteriorated insulation, moisture, dirty or corroded terminals, etc.

Cleaning

Smaller motors, the windings of which are not particularly accessible, should be taken apart.

First, the heavy dirt and grease should be removed with a heavy, stiff brush, wooden or fiber scrapers, and cloths. Rifle-cleaning bristle brushes can be used in the air ducts. Dry dust and dirt may be blown off, using dry compressed air at moderate pressure, for example, 25- to 30-lb pressure at the point of application, taking care to blow the dirt out from the winding. As stated before, if the dirt and dust are metallic, conducting, or abrasive, air pressure may drive the material into the insulation and damage it. Hence, for such conditions, pressure is not so satisfactory as a suction system. If compressed air at low pressure is used, care must be taken to direct it properly so that the dust will not cause damage and will not be pocketed in the various corners.

Grease, oil, and sticky dirt are easily removed by applying cleaning liquids like carbon tetrachloride (Pyrene, Carbona), gasoline, or naphtha. All of these liquids evaporate quickly and, if not applied too generously, will not soak or injure the insulation. Carbon tetrachloride is best and is recommended because it is noninflammable.

In case one of the other liquids must be used, it should be applied out-of-doors or in a well-ventilated room. It must be remembered that gasoline or naphtha vapor is heavier than air and will flow into pits, basements, etc., and may remain there for hours or even days. The casual smoker, a spark from a hammer or chisel, or even from a shoe nail, may cause a serious explosion. Therefore, proper ventilation of the room is essential and may require specially piped ventilating fans. In using carbon tetrachloride, the explosion hazard is obviated, but some ventilation is required to remove the vapor, which might affect the safety and comfort of the workmen.

There are several good methods of applying the cleansing liquid. A cloth, saturated in the liquid, may be used to wipe the coils. A paint brush, dipped in carbon tetrachloride, is handy to get into corners and crevices, and between small coils. Care should be taken not to soak the insulation, as would be the case if coils or small machines were dipped into the liquid.

Probably the best method of applying the liquid is to spray it on. A spray gun, paint-spraying appliance, or an ordinary blow torch is often used with good results, although the latter device is likely to give a heavier spray than desirable.

An atomizer will give excellent results, using a pressure of about 80 lb if the insulation is in good condition, or 40 to 50 lb if the insulation is old. The atomizer should be held not more than 5 or 6 inches away from the coils.

While the insulation will dry quickly at ordinary room temperature after such cleaning methods, it is highly desirable to heat it to drive off all moisture before applying varnish. This heating or drying-out process has already been discussed and, therefore, need only be mentioned here.

If the motor can be spared from service long enough, the insulation should be dried out by heating to from 90 to 100 C. While the motor is warm, a high-grade insulating varnish should be applied. For severe acid, alkali, or moisture conditions, a black plastic baking varnish is best, while, for conditions where oil or dusts are present, a clear or yellow varnish should be used.

The varnish may be sprayed or brushed on. For small stators or rotors, it is best to dip the windings into the varnish, cleaning off the adjacent metal parts afterwards by using a solvent of the varnish. After applying the varnish, the best results are obtained by baking for 6 to 7 hours at about 100 C. Experience with particular conditions of operation, or the condition of the insulation, may indicate the desirability of applying a second coat of the same varnish, followed again by 6 to 7 hours of baking at 100 C.

If the machine must be put back in service quickly, or if facilities are not available for baking, fairly good results will be obtained by applying one of the quick-drying black or clear varnishes which dry in a few hours at ordinary room temperatures.

Testing

Insulation resistance readings should be taken, as explained previously, to determine whether the winding is in satisfactory condition for applying a highpotential test. After this test, it is good practice to run the motor without load for a short time, to make certain that everything has been connected, assembled, and adjusted properly.

HELPFUL MOTOR INFORMATION

O ASSIST in checking problems or answering questions on motor operation, installation, or application, the following information is included in this catalog.
 Definitions of terms commonly used in describing motors and control.
 Approximate full-load speeds and currents.
 Synchronous speeds possible at various frequencies.
 Standard direction of rotation of G-E motors and generators.
 Miscellaneous formulas and data.
 Table for selecting wire and fuse sizes for motor branch circuits.
 Table of fuse intervals permissible.
 List of G-E motor publications.
 Lists of G-E Sales Offices, Service Shops, and Warehouses.

DEFINITIONS

PROTECTION OF MACHINES

Open Machine

An open machine is a self-ventilated machine having no restriction to ventilation other than that necessitated by mechanical construction.

Dripproof Machine

A dripproof machine is one in which the ventilating openings are so constructed that drops of liquid or solid particles falling on the machine at any angle not greater than 15 degrees from the vertical cannot enter the machine, either directly or by striking and running along a horizontal or inwardly inclined surface.

Dripproof, Fully Protected Machine

A dripproof, fully protected machine is a dripproof motor whose ventilating openings are protected by a wire screen.

Totally Enclosed Machine

A totally enclosed machine is one so enclosed as to prevent exchange of air between the inside and the outside of the case, but not sufficiently enclosed to be termed airtight.

Totally Enclosed, Fan-cooled Machine

A totally enclosed, fan-cooled machine is a totally enclosed machine equipped for exterior cooling by means of a fan or fans, integral with the machine but external to the enclosing parts.

Explosion-proof Machine

An explosion-proof machine is one in an enclosing case which is designed and constructed to withstand an explosion of a specified gas which may occur within it, and to prevent the ignition of the specified gas surrounding the motor by sparks, flashes, or explosions of the specified gas, which may occur within the machine casing.

Separately Ventilated Machine

A separately ventilated machine is one which has its ventilating air supplied by an independent fan or blower external to the machine.

Enclosed, Self-ventilated Machine

An enclosed, self-ventilated machine is a machine having openings for the admission and discharge of the ventilating air, which is circulated by means integral with the machine, the machine being otherwise totally enclosed. These openings are so arranged that inlet and outlet ducts or pipes may be connected to them.

NOTE: Such ducts or pipes, if used, must have ample section and be so arranged as to furnish the specified volume of air to the machine; otherwise, the ventilation will not be sufficient.

Enclosed, Separately Ventilated Machine

An enclosed, separately ventilated machine is a machine having openings for the admission and discharge of the ventilating air, which is circulated by means external to and not a part of the machine, the machine being otherwise totally enclosed. These openings are so arranged that inlet and outlet duct pipes may be connected to them.

DUTY AND SERVICE

Continuous Duty

Continuous duty is a requirement of service that demands operation at a substantially constant load for an indefinitely long time.

Intermittent Duty

Intermittent duty is a requirement of service that demands operation for alternate periods of (1) load and no load; or (2) load and rest; or (3) load, no load, and rest.

Ambient Temperature

Ambient temperature is the temperature of the air or water which, coming into contact with the heated parts of a machine, carries off their heat. (See MG-50-64.)

Note.—Ambient temperature is commonly known as "room temperature" in connection with air-cooled apparatus not provided with artificial ventilation.

Service Factor

A service factor of a general-purpose motor is a multiplier which, applied to the normal horsepower rating, indicates a permissible loading which may be carried under the conditions specified for the servicefactor.

Rated Load

Rated load shall mean horsepower output for motors, kilowatt output for direct-current generators, and kilovolt-ampere output for alternating-current generators.

Time Ratings

(1) Many machines are operated on a cycle of duty which repeats itself with more or less regularity. The heating of machines operating under such conditions is equivalent to a continuous run for a certain specified time. The standard duration of load tests, or time ratings, for machines operating on such ratings shall be as follows:

- (a) 5 min, to and including 30 hp.
- (b) 15 min, to and including 50 hp.
- (c) 30 min, to and including 60 hp.
- (d) 60 min.
- (e) continuous.

(2) Of the foregoing ratings, the first four are commonly known as short-time ratings. In every case, the short-time load test shall commence only when the windings and other parts of the machine are within 5 C of the room temperature at the time of starting the test.

Time Rating

Time rating is the period of a test \mathbf{r} un within which the specified conditions of load and temperature rise shall not be exceeded.

Full-load Torque

The full-load torque of a motor is the torque necessary to produce its rated horsepower at full-load speed. In pounds at one foot radius, it is equal to the horsepower times 5250, divided by the full-load speed.

Locked-rotor Torque

The locked-rotor torque of a motor is the minimum torque which it will develop at rest for all angular positions of the rotor, with rated voltage applied at rated frequency.

Pull-up Torque

The pull-up torque of a motor is the minimum torque developed by the motor during the period of acceleration from rest to full speed with rated voltage **applied** at rated frequency.

Breakdown Torque

The breakdown torque of a motor is the maximum torque which it will develop with rated voltage applied at rated frequency, without an abrupt drop in speed.

Pull-out Torque

The pull-out torque of a synchronous motor is the maximum sustained torque which the motor will develop at synchronous speed for one minute, with rated voltage applied at rated frequency and with normal excitation.

Pull-in Torque

The pull-in torque of a synchronous motor is the maximum constant torque under which the motor will pull its connected inertia load into synchronism, at rated voltage and frequency, when its field excitation is applied.

The speed to which a motor will bring its load depends on the power required to drive it, and whether the motor can pull the load into step from this speed, depends on the inertia of the revolving parts, so that the pull-in torque cannot be determined without knowing the WR^2 as well as the torque of the load.

Locked-rotor Current

The locked-rotor current of a squirrel-cage induction or other internally short-circuited motor is the current taken from the line with the rotor locked and with rated voltage and frequency applied to the motor.

The locked-rotor current of a motor and starter is the current taken from the line with the rotor locked, with the starting device in the starting position, and with rated voltage and frequency applied.

Secondary Voltage—Wound-rotor Motors

The secondary voltage of wound-rotor motors is the open-circuit voltage at standstill, measured across the slip rings.

Regulation—Direct-current Generators

The regulation of a d-c generator is usually stated by giving the numerical values of the voltage at no-load and rated load and, in some cases, it is advisable to state regulation at intermediate loads. The regulation of d-c generators refers to changes in voltage corresponding to gradual changes in load, and does not relate to the comparatively large momentary fluctuations in voltage that frequently accompany instantaneous changes in load.

GENERAL CLASSIFICATION

General-purpose Motors

(a) A general-purpose motor is any motor of 200 hp or less and 450 rpm or more, having a continuous rating, and designed, listed, or offered in standard ratings for use without restriction to a particular application.

(b) A general-purpose synchronous motor is any motor rated 200 hp or less at 1.0 power factor, or 150 hp or less at 0.8 power factor, and speeds higher than 450 rpm, having a continuous time rating, and designed, listed, or offered in standard ratings for use without restriction to a particular application.

GENERAL DELECTRIC

Special-purpose Motors

A special-purpose motor is an industrial power motor specifically designated and listed for a particular power application where the load requirements and duty cycle are definitely known.

Fractional-horsepower Motor

A fractional-horsepower motor is a motor built on a frame smaller than that having a continuous rating of 1 hp, open-type, at 1700-1800 rpm.

Large Power Motor

A large power motor is a motor built in a frame having a continuous rating of 1 hp, open-type, at 1700-1800 rpm, or in a larger frame.

SPEED CLASSIFICATION

Rated Speed of Motors

The rated speed of an alternating-current generalpurpose motor is defined as the full-load speed stamped on the nameplate.

Constant-speed Motor

A constant-speed motor has a speed which at normal operation is constant or practically constant. For example, a synchronous motor, an induction motor with small slip, or an ordinary direct-current shunt-wound motor.

Varying-speed Motor

A varying-speed motor has a speed which varies with the load, ordinarily decreasing when the load increases; such as a series motor, or an induction motor with large slip.

Adjustable-speed Motor

An adjustable-speed motor has a speed which can be varied gradually over a considerable range, but when once adjusted remains practically unaffected by the load, such as a shunt motor with field-resistance control designed for a considerable range of speed adjustment.

Adjustable-varying-speed Motor

An adjustable-varying-speed motor has a speed which can be adjusted gradually, but when once adjusted for a given load will vary in considerable degree with change in load; such as a compound-wound direct-current motor adjusted by field control, or a wound-rotor induction motor with rheostatic speed control.

Multispeed Motor

A multispeed motor can be operated at any one of two or more definite speeds, each being practically independent of the load. For example, a direct-current motor with two armature windings, or an induction motor with windings capable of various pole groupings.

MISCELLANEOUS

Front of a Machine

The front of a normal motor or generator is the end opposite the coupling or driving pulley.

Back of a Machine

The back of a normal motor or generator is the end which carries the coupling or driving pulley.

Undervoltage Protection

The effect of a device operative, on the reduction or failure of voltage, to cause and maintain the interruption of power to the main circuit.

Undervoltage Release

The effect of a device operative, on the reduction or failure of voltage, to cause the interruption of power to the main circuit, but not preventing the re-establishment of the main circuit on return of voltage.

Oil Circuit Breaker vs. Oil Switch

Officially adopted definitions distinguish an oil circuit breaker from an oil switch as a device which will open the circuit under a flow of current, while the latter is intended to open the circuit only when "dead," i.e., not carrying current. This distinction is observed throughout this catalog.

Air Circuit Breaker vs. Oil Circuit Breaker

To avoid misunderstanding or confusion of terms, it will be necessary to state, especially in telegrams whether oil circuit breakers or air circuit breakers are desired.

The term "air" will be used to distinguish carbonbreak and magnetic-blowout types of circuit breakers from oil circuit breakers.

APPROXIMATE FULL-LOAD SPEEDS OF MOTORS

The full-load speed of alternating-current induction motors varies slightly with changes in line voltage, and rises as the load decreases.

The approximate average full-load speeds of 60-cycle induction motors and corresponding direct-currentmotor speeds are shown in the table at the right.

			FULL-	LOAD SPE	EDS, RPM	
No. Poles	Synchronous Speeds, Rpm	Type K	Type KG	Type M	Type KC	Direct- current Motors
2 4 6	3600 1800 1200	3470 1750 1160	1740 1150	$3520 \\ 1720 \\ 1140$	3500 1760 1160	$3500 \\ 1750 \\ 1150$
8 10 12	900 720 600	870 695 575	865 690 570	855 690 575	870 	850 690 575

APPROXIMATE FULL-LOAD CURRENTS OF MOTORS

for motors of various types, frequencies, and speeds. Variations of 10 per cent above or below the values They have been compiled from average values for given may be expected.

The following data are approximate full-load currents representative motors of their respective classes.

									Full-l	oad Cur	rent—A	mperes	6							
			1							ALTERN	ATING-C	URRENT	MOTOR	s						
Нp		DIRECT- CURRENT Single		-phase								Three-	phase							
of Motor		ORS	Type Mo	-phase SCR tors				nductio	n Moto	rs	_	-			S	ynchror	ious Mo	otors		
						Squirr	el-cage			Wound	d-rotor			1.0-pow	er-facto	r		0.8-pow	er-facto	r
	115- volt	230- volt	110- volt	220- volt	220- volt	440- volt	550- volt	2200- volt	220- volt	440- volt	550- volt	2200- volt	220- volt	440- volt	550- volt	2200- volt	220- volt	440- volt	550- volt	2200- volt
1/6 1/4 1/3	$2.0 \\ 2.6 \\ 3.2$	$ \begin{array}{c c} 1.0\\ 1.3\\ 1.6 \end{array} $			0.90 1.16 1.4		0.36 .48 .56													
1/2 3/4 1	4.6 6.4 8.2	$2.3 \\ 3.2 \\ 4.1$	8.0 10.6 12.8	4.0 5.3 6.4	$1.9 \\ 2.6 \\ 3.4$.95 1.3 1.7	.76 1.04 1.36		5.4	2.7	2.2									
1½ 2 3	$12.4 \\ 16.2 \\ 24$	$\begin{array}{c} 6.2 \\ 8.1 \\ 12 \end{array}$	17.6 22 31	8.8 11 15.5	5.0 6.2 9.0	$2.5 \\ 3.1 \\ 4.5$	$2.0 \\ 2.5 \\ 3.6$		6.8 8.0 10.5	3.4 4.0 5.3	2.7 3.2 4.2			*						
5 7½ 10	40 60 78	20 30 39	48 68 90	24 34 45	14.5 21 26	$7.2 \\ 10.5 \\ 13.5$	5.7 7.3 11		16 23 29	8.0 11.5 14.5	6.4 9.2 10.5									3
15 20 25	114 150 186	57 75 93			40 52 65	20 26 32	16 21 26	· · · · · · · · · · · · · · · · · · ·	42 54 68	21 27 34	17 23 27	···· 7.7	46 58	23 29	18.5 23	4.6 5.8	62 74	31 37	25 30	6. 2 7.4
30 40 50	$225 \\ 295 \\ 365$	112 147 182		 	78 102 126	39 51 63	31 41 51	$\substack{8.1\\10.5\\12.5}$	80 104 128	40 52 64	32 42 51	$8.8 \\ 11 \\ 13.5$	68 88 110	34 44 55	27 35 44	6.8 8.8 11	88 115 140	44 57 70	$35 \\ 46 \\ 56$	8.8 11.5 14
60 75 100		218 270 355			152 188 250	76 94 125	60 75 100	15 18.5 24.5	$154 \\ 188 \\ 250$	77 94 125	62 75 100	$15.5 \\ 19 \\ 25$	130 162 216	65 81 108	52 65 86	13 16 22	170 210 280	84 104 140	67 83 112	17 21 28
125 150	· · · · · · ·	445 530	 	·····	310 370	155 185	125 145	30 36	310 370	155 185	125 145	31 37	268 320	134 160	107 128	27 32	340 410	170 205	136 164	34 41
200		700			490	245	195	49	490	245	195	49	420	210	168	42	540	270	216	54

Synchronous Speeds Possible at Various Frequencies

Poles	60 Cycles	50 Cycles	40 Cycles	25 Cycles	Poles	60 Cycles	50 Cycles	40 Cycles	25 Cycles
2 4 6	3600 1800 1200	3000 1500 1000	$2400 \\ 1200 \\ 800$	1500 750 500	56 58 60	128.6 124.1 120	$107.2 \\ 103.5 \\ 100$	85.7 82.8 80	
$\begin{smallmatrix}&8\\10\\12\end{smallmatrix}$	900 720 600	750 600 500	600 480 400	375 300 250	62 64 66	$116.1 \\ 112.5 \\ 109$	96.8 93.7 90.8	77.4 75 72.7	
14 16 18	$514.2 \\ 450 \\ 400$	428.6 375 333.3	$343 \\ 300 \\ 266.6$	$214.3 \\ 187.5 \\ 166.6$	68 70 72	105.9 102.8 100	88.2 85.7 83.3	70.6	e
20 22 24	360 327.2 300	300 272.7 250	$240 \\ 218.1 \\ 200$	150 136.3 125	74 76 78	97.3 94.7 92.3	81 78.9 76.9		
26 28 30	277 257.1 240	230.8 214.2 200	184.5 171.5 160	$115.4 \\ 107.1 \\ 100$	80 82 84	90 87.8 85.7	75 73.2 71.4		
32 34 36	225 212 200	187.5 176.5 166.6	150 141.1 133.3	93.7 88.2 83.3	86 88 90	83.7 81.8 80		1	
$38 \\ 40 \\ 42$	$189.5 \\ 180 \\ 171.5$	157.9 150 142.8	$126.3 \\ 120 \\ 114.2$	78.9 75 71.4	92 94 96	78.3 76.6 75			
44 46 48	163.5 156.6 150	136.3 130.5 125	109 104.3 100	4 n	98 100	73.5 72			
50 52 54	144 138.5 133.3	120 115.4 111.1	96 92.3 88.9						

Lower speeds are limited by cost, rather than by design.

G-E Motors and Generators

The following rules govern direction of rotation, clockwise or counterclockwise, of G-E generators and motors. These rules are the standards of the Company and are followed in all cases.

Standard Direction of Rotation

Rotation	Viewed From	See Paragraph
Clockwise	A	1
Clockwise	C A	3
Counterclockwise Counterclockwise	A A	1
		1
	Clockwise Clockwise Counterclockwise Counterclockwise Counterclockwise Counterclockwise	Clockwise A Clockwise C Counterclockwise A Counterclockwise A Counterclockwise A Counterclockwise A

In all cases, the observer will stand at the designated end of the machine, facing the machine in line with the shaft.

1. End A. The direction of rotation of standard motors and generators will be determined by viewing the end opposite the driven end of generators, and opposite the driving end of motors

2. End B. The direction of rotation of synchronous motorgenerator sets, induction motor-generator sets with motors not having conduit boxes, and frequency changers, will be deter-mined by that of the driving motor. When there are one or more generators on each end of the driving motor, the direction of rotation will be determined by viewing the motor from the

connection end of the stator coils. 3. End C. The direction of rotation of induction motor-generator sets will be determined by that of the generator. When there are one or more generators on each end of the driving motor, the direction will be determined by viewing the set from the end which places the conduit boxes on the lefthand side.

Polyphase induction motors, except certain high-speed motors which are equipped with unidirectional fans, are suitable for either direction of rotation, which can be reversed by interchanging two leads. High-speed motors, with unidirectional fans, must be ordered for the desired direction of rotation.

MISCELLANEOUS FORMULAS AND DATA

STORED ENERGY IN FLYWHEEL

Ft-lb energy stored in flywheel = $E = \frac{1}{2}$ (Wv²/g) In which $\breve{E} = Ft$ -lb stored energy

W = Weight of flywheel in lb

- v=Velocity of radius of gyration in ft per sec
- g = Acceleration due to gravity (32.2 ft per sec)

TORQUE-HP FORMULA

 $Torque = \frac{Hp \times 5250}{Torque}$ rpm

PRONY-BRAKE-TEST FORMULA

 $2 \times 3.1416 \times \text{Lever in ft} \times \text{lb} \times \text{rpm}$ Hp =33,000

CENTRIFUGAL FORCE

F =centrifugal force in pounds

W = weight of revolving body in pounds

- r = distance from the axis of motion to the center of gravity of the body in feet g =acceleration due to gravity (32.2 ft per sec)
- N = number of revolutions per minute v = velocity in feet per second

$$E = \frac{W v^2}{V} = 0.0034 W r M^2$$

$$F = \frac{1}{g r} = .00034 W r N^2$$

CONVERSION FORMULA FOR CENTIGRADE AND FAHRENHEIT THERMOMETER SCALES

C F-32 $\overline{100} = 180$

In which C = Temperature in deg centigrade F = Temperature in deg Fahrenheit

OHM'S LAW

The strength of the current in any circuit is directly proportional to the electromotive force in that circuit and inversely proportional to the resistance of that circuit, i.e., is equal to the quotient arising from dividing the electromotive force by the resistance.

GENERAL B ELECTRIC

E = electromotive force in volts Let R =resistance in ohms Ι

Then
$$I = \frac{E}{R}, R = \frac{E}{I}, E = IR$$

EXAMPLE.—The electromotive force of a circuit is 110 volts, and its resistance is 55 ohms; what is the strength of current?

SOLUTION.—E = 110 volts. R = 55 ohms $I = \frac{E}{R} = \frac{110}{55} = 2 \text{ amperes}$

The ohm, ampere, and volt are defined in terms of one another as follows: Ohm, the resistance of a conductor through which a current of 1 ampere will pass when the electromotive force is 1 volt. Ampere, the quantity of current which will flow through a resistance of 1 ohm when the electromotive force is 1 volt. Volt, the electromotive force required to cause 1 ampere to flow through a resistance of 1 ohm.

WIRE AND CABLE DATA

1 circular mil is the area of a circle with 0.001-inch diameter = 0.000,000,7854.

A circle one inch in diameter has an area of 1,000,000 circular mils.

1,000,000 circular mils = 0.7854 square inch.

Stranded cable (without hemp core), on account of cords between wires, is 15 per cent larger in diameter than solid conductor for the same circular mils.

A diameter of standard cable of 1.15 inches = 1,000,-000 circular mils.

Conversely-

A one-inch stranded cable = 87 per cent of 1,000,000 circular mils, or 870,000 circular mils.

These ratios hold for any stranding of any size wires found in commercial cable.

Conductor Sizes and Overcurrent Protection for Motors

Extracted from National Electrical Code, Table 20, pages 316-319

			_	1				OF PRANCE OFFICIAT	PUOPS			
						MAXIMUM ALLOWABLE RATING OF BRANCH-CIRCUIT FUSES						
Full-	1	M-SIZE CON IN RACEWAY Wg AND M(s	RUNNING	DR PROTECTION DTORS	With Code Letters Single-phase, squirre cage, and synchronoo Full-voltage, resist or reactor starting Code letters B to E		Letters Squirrel-cage and synchro- nous. Auto-				
load Current Rating of Motor, Amperes	Type R	Type RP	Type RH	Maximum Rating of N.E.C. Fuses Amp	Maximum Setting of Time-limit Protective Device Amp	and synchronous. Full-voltage, resistor and reactor starting, Code letters F to Without Code Letters Same as above.	inclusive. Autotrans- former starting, Code letters F to R inclusive. Without Code Letters Squirrel-cage and syn- chronous, autotrans- former starting, High- reactance squirrel- cage. (Both not more than 30 amperes.)	inclusive. Without Code Letters Squirrel-cage and synchro- nous. Auto- transformer starting, High- reactance squirrel cage. (Both more than 30 amperes.)	All motors. Code letter A. Without Code Letters D-c and wound-rotor motors.			
1 2 3	14 14 14	14 14 14	$\begin{array}{r}14\\14\\14\\14\\14\end{array}$		$ \begin{array}{r} 1.25 \\ 2.50 \\ 3.75 \\ 5.0 \\ \end{array} $	15 15 15 15	15 15 15 15 15 15 15 15 1	$15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$	$15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$			
5 6 7 8	$ \begin{array}{r} 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \end{array} $	14 14 14 14 14	$ \begin{array}{r} 14 \\ 14 \\ 14 \\ 14 \\ 14 14 \end{array} $	8 8 10 10	$ \begin{array}{r} $	15 20 25 25	15 15 20 20	$\begin{array}{r}15\\15\\15\\20\end{array}$	15 15 15 15 25			
$9 \\ 10 \\ 11 \\ 12$	$\begin{array}{r}14\\14\\14\\14\\14\end{array}$	$\begin{array}{r}14\\14\\14\\14\\14\end{array}$	$\begin{array}{r}14\\14\\14\\14\\14\\14\end{array}$	$ \begin{array}{r} 12 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ \end{array} $	$ \begin{array}{r} 11.25 \\ 12.50 \\ 13.75 \\ 15.00 \\ \end{array} $	30 - 30 35 40	25 25 30 30	20 20 25 25	15 15 20 20			
$ \begin{array}{r} 13 \\ 14 \\ 15 \\ 16 \end{array} $	$ \begin{array}{c} 12 \\ 12 \\ 12 \\ 12 \\ 12 \end{array} $	$ \begin{array}{r} 14 \\ 14 \\ 12 \\ 12 \end{array} $	$ \begin{array}{r} 14 \\ 14 \\ 14 \\ 14 \\ 14 \end{array} $	20 20 20 20	$ \begin{array}{r} 16.25 \\ 17.50 \\ 18.75 \\ 20.00 \\ \end{array} $	40 45 45 50	35 35 40 40 40	30 30 30 35	20 25 25 25 25			
17 18 19 20	10 10 10 10	$ \begin{array}{r} 12 \\ 12 \\ 10 \\ 10 \\ 10 \end{array} $	$ \begin{array}{r} 14 \\ 12 \\ 12 \\ 12 \end{array} $	25 25 25 25	$21.25 \\ 22.50 \\ 23.75 \\ 25.0$		45 45 50 50	$ \begin{array}{r} 35 \\ 40 \\ 40 \\ 40 \\ 40 \end{array} $	30 30 30 30			
22 24 26 28	8 8 8 8	$ \begin{array}{c} 10\\ 10\\ 8\\ 8 \end{array} $	10 10 10 10	30 30 35 35	27.50 30.00 32.50 35.00	70 80 80 90	60 60 70 70	$\begin{array}{r} 45\\50\\60\\60\end{array}$	$35 \\ 40 \\ 40 \\ 45$			
30 32 34 36	6 6 6 6	8 8 6 6	8 8 8 8	$ \begin{array}{r} 40 \\ 40 \\ 45 \\ 45 \\ 45 \end{array} $	$37.50 \\ 40.00 \\ 42.50 \\ 45.00$	$90 \\ 100 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ $	70 80 90 90	60 70 70 80	45 50 60 60			
38 40 42 44	5 5 5 4	6 6 6 5	8 6 6 6	50 50 50 60	$\begin{array}{r} 47.50 \\ 50.00 \\ 52.50 \\ 55.0 \end{array}$	$125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125$	100 100 110 110	80 80 90 90	60 60 70 70			
46 48 50 52 54	4 4 3 3 3	5 5 5 4 4	6 6 6 5	60 60 60 70 70	$ \begin{array}{r} 57.50\\ 60.00\\ 62.50\\ 65.0\\ 67.50 \end{array} $	$ \begin{array}{r} 150 \\ 150 \\ 150 \\ 175 \\ 175 \\ 175 \\ \end{array} $	$ \begin{array}{r} 125 \\ 125 \\ 125 \\ 150 \\ $	100 100 100 110 110	70 80 80 80 90			
$56 \\ 58 \\ 60 \\ 62$		4 3 3 3	5 5 5 4	70 70 80 80 80	70.00 72.50 75.00 77.50	175 175 200 200	150 150 150 150 175	120 120 120 120 125	90 90 90 90 100			
64 66 68 70	2 1 1 1 1	3 3 2 2	$\begin{array}{r} 4\\ 4\\ 4\\ 3\\ \end{array}$	80 80 90 90	80.00 82.50 85.00 87.50	$ \begin{array}{r} 200 \\ 200 \\ 225 \\ 225 \\ 225 \end{array} $	175 175 175 175 175	150 150 150 150 150	100 100 110 110			
72 74 76 78	1 0 0 0	$\begin{array}{c}2\\2\\2\\1\end{array}$	3 3 3 3	90 90 100 100	90.00 92.50 95.00 97.50	225 225 250 250	200 200 200 200 200	150 150 175 175	$110 \\ 125 $			
80 82 84 86	0 0 0 00	1 1 1 1	$\begin{array}{c}2\\2\\2\\2\\2\\2\end{array}$	100 110 110 110 110	$ \begin{array}{r} 100.00 \\ 102.50 \\ 105.00 \\ 107.50 \end{array} $	250 250 250 300	200 225 225 225 225	175 175 175 175 175	$125 \\ 125 \\ 150 \\ 150$			
88 90 92 94	00 00 00 00 00	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c c} 2\\ 2\\ 2\\ 2\\ 1 \end{array}$	$ \begin{array}{r} 110 \\ 110 \\ $	$\begin{array}{r}110.00\\112.50\\115.00\\117.50\end{array}$	300 300 300 300 300	225 225 250 250	200 200 200 200 200	$150 \\ 100 \\ 100 $			

-

Time Intervals within Which National Electrical Code Standard Enclosed Fuses Must Blow on 150 Per Cent Rated Current

Rating of Fuse,	Max Allowable	Rating of Fuse,	Max Allowable
Amperes	Time, Min	Amperes	Time, Min
$0-30 \\ 31-60 \\ 61-100$	1 2 4	$ 101-200 \\ 201-400 \\ 401-600 $	$\begin{array}{c} 6\\ 12\\ 15 \end{array}$

FUSING CURRENTS OF COMMERCIAL FUSE WIRE

These values given below are approximate, since the fusing current is determined by the proportion and kinds of alloys used, kind and form of terminal, length of fuse, and other factors.

Nearest Size, Awg	Diameter, In.	Fusing Current, Amp	Nearest Size, Awg	Diameter, In.	Fusing Current, Amp
$\begin{array}{r} 30\\24\\20\end{array}$	$0.010 \\ 0.020 \\ 0.030$	1. 7 4.9 9.0	10 9 8	$0.100 \\ 0.110 \\ 0.130$	$54.1 \\ 63.1 \\ 81.1$
19 18 16	$0.035 \\ 0.040 \\ 0.050$	$11.3 \\ 13.3 \\ 19.8$	776	$\begin{array}{c} 0.140 \\ 0.150 \\ 0.160 \end{array}$	90.6 100.5 110.7
$14\\13\\12$	0.060 0.070 0.080	$25.4 \\ 32.0 \\ 39.1$	6 5 4	0.180 0.200	$132.1 \\ 154.7$

GENERAL @ ELECTRIC

PARTIAL LIST OF G-E MOTOR PUBLICATIONS

Motors, General	
Consolidated Prices and Data	GEA-2739
Polyphase Induction Motors	
Type K, Open, Squirrel-cage	
Tri-Clad, Frames 203-326	GEA-3580
Tri-Clad, Frames 203-326. General-purpose, Frames 364-505. General-purpose, Frames 542-579. Dripproof for Power Stations, 100 to 1500 hp	
Dripproof for Power Stations, 100 to 1500 hp	GEA-3475
Type KF, Open, Squirrel-cage	
General-purpose, Frames 364–505 3600 and 3000 Rpm, 125 Hp and Larger General-purpose, Frames 542–579	GEA-3535 GEA-978
General-purpose, Frames 542-579	GEA-1807
Type KG, Open, Squirrel-cage	
Tri-Clad, Frames 203–326 General-purpose, Frames 364–605 General-purpose, Frames 542–579	GEA-3580
General-purpose, Frames 542–579.	
Valv-amp Rotors. Dripproof for Power Stations, 100 to 1500 Hp Air-conditioning and Refrigeration Compressors	
Air-conditioning and Refrigeration Compressors	GEA-3479
Type KR, Open, Squirrel-cage	
Tri-Clad, Frames 203–326 General-purpose, Frames 364–505	GEA-3580 GEA-3535
	····· GDII-0000
Type M, Open, Wound-rotor Wound-rotor Induction Motors Frames 204-578	GEA-1698
Wound-rotor Induction Motors, Frames 204–578 Dripproof for Power Stations, 100 to 1500 Hp Steel-mill Main-roll Drives	
Steel-mill Main-roll Drives	GEA-789
Type BTA Motors	GEA-712
Multispeed Induction Motors	GEA-1884
Splashproof Induction Motors	
	GEA-3595
General-purpose, Frames 364 and Larger	GEA-1619
Totally Enclosed Induction Motors	
Totally Enclosed, Nonventilated Totally Enclosed, Fan-cooled Totally Enclosed, Fan-cooled, Frames 364-505	GEA-1538 GEA-1326
Totally Enclosed, Fan-cooled, Frames 364-505	GEA-3381
Explosion-proof Inert-gas-filled for Hazardous Gas Locations	
Vertical Solid-shaft Motors	
Vertical Solid-shaft Motors.	GEA-1412
Vertical Hollow-shaft Motors Vertical Hollow-shaft Motors	GEA-1368
Vertical Hollow-shaft Motors Oil-lubricated Ball-thrust Bearings Pin-type Coupling	
Nonreverse Ratchet	GEA-3626
Mechanical Modifications	
Face- and Flange-type End Shields.	GEA-2090
Insulation. Face- and Flange-type End Shields Brake-motors. Temperature-indicating Equipment. Beauting temperature Relays.	
Bearing-temperature Relays	GEA-2209
Single-phase Induction Motors	
Capacitor-motors	
Tri-Clad, Types KC and KCJ Tri-Clad, Types KC and KCJ	GEA-3473
Tri-Clad, Types KC and KCJ	GEA-3603
Type RB Brush-shifting Motor	GEA-98
Vertical Motors, Type KC	CEA 2002
vertical motors, Type KC	
Pacific, G-E Motorized, Speed Reducers	
Pacific, G-E Motorized, Speed Reducers	GEA-1870
Pacific, G-E Motorized, Speed Reducers Pacific, G-E Motorized, Speed Reducers Pacific, G-E Motorized, Speed Reducers Pacific, G-E Motorized, Speed Reducers	GEA-3653
Pacific, G-E Motorized, Speed Reducers	GEA-3654
Fractional-horsepower Motors	
General-purpose Motors	
Type KH, Split-phase	GEA-1276
Type K, Polyphase. Type KC, Capacitor. Type KC, Capacitor.	
General-purpose Motors	GEA-2492
Type KH, Split-phase Type BC, Direct-current	
Fan and Blower Motors Motors for Belt-driven Blowers	OFA 0607
Permanently Split Capacitor.	GEA-2027 GEA-3365
Oil human Matan	CEA 9497
Oil-burner Motors	GEA-3437

GENERAL	ELECTRIC
---------	-----------------

Fractional-horsepower Motors (Cont'd)	
Refrigeration Motors	
Type KC, Capacitor, Induction	
Gasoline-pump Motors	
Sump-pump Motors	GEA-3352 GEA-3465
Machine-tool Motors	
Type P Series-wound Universal Motors	GEA-1988
Type SMY Synchronous Inductor Motors	
Thermo-Tectors	GEA-2369
Series-motor Parts for Built-in Applications	GEA-1942
Synchronous Motors	
General	GEA-1191 GEA-3345
High-speed ''900 Series''	GEA-3434
Low-speed Motors	
Low-speed ''6000 Series''	GEA-137 GEA-529 GEA-1195
Exciters	5 JII 1100
Motor-generator Sets	GEA-394 GEA-432
Synchronous-motor Control	JEA-1724
Direct-current Motors General-purpose, Open, Constant-speed	
	GEA-1542
Type B, Frames 204–284, and Type CD, Frames 66–95	
Speed Variator	GEA-3517
Open, Adjustable-speed Type B, Frames 204–284, and Type CD, Frames 66–95(FA-1542
Type CD-1000. Type MPC.	GEA-1868 GEA-1294
Totally Enclosed	
Totally Enclosed, Nonventilated	GEA-1365 GEA-1882
Crane, Hoist, and Steel-mill Equipment	
A-c Crane and Hoist Motors	
Type KR, Tri-Clad, Frames 203-326 Type KR, General-purpose, Frame 364-505 Type KR, Totally Enclosed Type MR, Frames 204-505	GEA-3580 GEA-3535 GEA-1366
D-c Crane and Hoist Motors	JEA-2/14
Type B, Frames 204-284, and Type CD, Frames 66-95 Type CO D-c Totally Enclosed Motors Type MD D-c Mill Motors	GEA-1542 GEA-380
	JEA-714
Textile Equipment Screenless Open Motors	GEA-1557 GEA-1556
Motors for Built-in Applications High-speed Type K "Built-in" Motors	
Frequency Converters and Converter Sets.	GEA-750
Miscellaneous Special-service Motors	
Splashproof for Oil-well Pumping Tri-Clad Frames 203-326	GEA-3595
Tri-Clad, Frames 203–326 General-purpose, Frames 364 and Larger	GEA-1619
Wound-rotor for Refrigeration Compressors	GEA-1698
Valve Motors Tri-Clad, Frames 203–326 Type B, Frames 204–284, and Type CD, Frames 66–95(GEA-3580
Portable Farm Motor	
Generators, Converters, and Motor-generator Sets	
Generators for Diesel Service	GEA-2072
High-speed "900 Series"	GEA-3435
Low-speed Generators Low-speed, "6000 Series" Low-speed, 6184 and 6214 Frames	GEA-383
Low-speed, 0184 and 0214 Frames	-1900
Motor-generator Sets	GEA-394 GEA-432
	JEA-1607
Induction Motor-generator Sets Induction Motor-generators	GEA-1598 GEA-394
Synchronous Motor-generator Sets	

.

SUBJECT INDEX

PAGE

	GE
Α	
djustable-constant-speed A-c Motors, Type BTA, Pictorial Selector.	15
djustable-speed D-c Motors	
ltitude, Effect on Machines	
pplication and Selection of Motors96-	
tmosphere, Surrounding	
inospiere, burrounding	100
B and a second	
alance	99
alancing, Dynamic	63
ases and Pulleys	67
earing Clearances, Special.	65
earings	, 69 135
BALL, GREASING.	134
SLEEVE, CLEANING AND OILING	136
Approx of Drug	196
Application of Drive	128
Arc of Contact	128
SPEED 126-	128
SLIP. SPEED. 126- TENSION TIGHTENER ATTACHMENT. WIDTH	128
TIGHTENER ATTACHMENT	69 127
eltsand Pulleys, Direction of Drive	128
rake-motors (Information furnished upon	
request)	
rakes, Motor-mounted	63
e e e e e e e e e e e e e e e e e e e	
enacitor-motors, Types KC, KCI, KCP	
apacitor-motors, Types KC, KCJ, KCP (See the subdivision of Single-phase Induc- tion Motors under Fractional-hp and In-	
tion Motors under Fractional-hp and In- tegral-hp)	
eiling-mounted Motors, Assembly Symbols	117
ode Letters, Starting Kva, Nameplates	
	116
odes	100
odes commutators, Inspection and Servicing compound-wound Motors, Description	100 137 108
odes commutators, Inspection and Servicing compound-wound Motors, Description conductor Sizes	100 137 108 145
odes. commutators, Inspection and Servicing compound-wound Motors, Description onductor Sizes. onduit Boxes.	100 137 108 145 65
odes ommutators, Inspection and Servicing ompound-wound Motors, Description onductor Sizes onduit Boxes onnection Diagrams	100 137 108 145 65
odes ommutators, Inspection and Servicing ompound-wound Motors, Description onduit Boxes . onnection Diagrams onnections	100 137 108 145 65 132
odes. commutators, Inspection and Servicing compound-wound Motors, Description onductor Sizes. conduit Boxes. connection Diagrams connections ELECTRICAL	100 137 108 145 65 132
odes	100 137 108 145 65 132 131 125
odes compound-wound Motors, Description conductor Sizes conductor Sizes connection Diagrams connections ELECTRICAL	100 137 108 145 65 132 131 125
odes	100 137 108 145 65 132 131 125 108
odes	100 137 108 145 65 132 131 125 108
odes	100 137 108 145 65 132 131 125 108 109 108
odes	100 137 108 145 65 132 131 125 108 109 108
odes	100 137 108 145 65 132 131 125 108 109 108
odes	100 137 108 145 65 132 131 125 108 109 108 -77
odes	100 137 108 145 65 132 131 125 108 109 109 109 109 109 109 109 109
odes	100 137 108 145 65 132 131 125 108 109 108 -77 109 109 109 109 109
odes	100 137 108 145 65 132 131 125 108 109 109 109 109 109 109 109 109 109 75 63
odes	100 137 108 145 65 132 131 125 108 109 109 109 109 109 109 109 109 109 75 63
odes	100 137 108 145 65 132 131 125 108 109 109 109 109 109 109 109 109 109 75 63
odes	100 137 108 145 65 132 131 125 108 -77 109 109 109 109 109 109 109 109 109 109
odes	100 137 108 145 65 132 131 125 108 109 109 99 99 99 109 109 109 1
odes	100 137 108 145 65 132 131 125 108 -77 109 108 -77 109 109 109 109 109 109 109 109 109 109
odes	100 137 108 145 65 132 131 125 108 -77 109 108 -77 109 109 109 109 109 109 109 109 109 109
ordes	100 137 108 145 65 132 131 125 108 109 108 -77 109 109 109 109 109 109 109 109 109 109
odes	100 137 108 145 65 132 131 125 108 -77 109 109 109 109 109 109 109 109 109 109

B B B B

B

Definitions	42
Dimension Prints	95
Dimensions (See subdivision under each type	
of motor)	
Direct-current Motors	
Characteristics and Applications (Chart). 1	10
Description	
Enclosures	
Applications	06
Dripproof	
Protected	48
Self-(pipe-)ventilated	
Splashproof	
Servicing	
Speed	43
Types and Characteristics, Electrical	18

Voltage-variation Effects (Chart)110

Direct-current Motors (Cont)	
FRACTIONAL-HP, GENERAL-PURPOSE	
Open, Constant-speed, Type BC	
Control. (See also G-E Control Catalog,	76
(See also G-E Control Catalog, GEA-606)	
Description	-44
Enclosures	48
Enclosures Modifications and Accessories	62
Mounting Dimensions Pictorial Selector	79
Pictorial Selector	11
Prices and Ratings	44
Special Features	44 79
Weights Industrial and Machine-tool Design,	19
MOTORS FOR	
Prices and Ratings.	44
INTEGRAL-HP	
Open, Heavy-duty, Types B, CD, Adjust-	
able- and Constant-speed	
Control. (See also G-E Control Catalog,	76
(See also G-E Control Catalog,	
GEA-606)	45
Medifications and Accorneries 67	60
Mounting Dimensions 82.87	-88
Pictorial Selector	. 12
Description. Modifications and Accessories67 Mounting Dimensions	
	. 41
Weights	-88
Open, Heavy-duty, Types B, CD, Adjust-	
able-varving-speed	
Crane and Hoist, Type CO, Pictorial	13
Selector. Mill Motors, Types MD, MDP, Pic- torial Selector	10
torial Selector	13
torial Selector Enclosures (Dripproof, Protected, Self-	
(pipe-)ventilated, Splashproof) Description. Mounting Dimensions. Pictorial Selector	
Description	48
Mounting Dimensions	81
Pictorial Selector	13
Prices and Ratings Totally Enclosed, Standard and Explo-	48
sion-proof, Types B, CD	
	76
(See also G-E Control Catalog,	
GEA-000)	
Description. Modifications and Accessories	49
Modifications and Accessories	67
Mounting Dimensions	-88
Delegent Matters Trace D CD	10
Dripproof Motors, Types B, CD	106
DESCRIPTION	100
Drives	07
BELT AND CHAIN.	97
GEAR Individual or Group	
Dynamic Balancing	00
and the second	

Efficiency
Enclosures
End Play
End-shield-mounted Tri-Clad Motors (See Polyphase, Squirrel-cage, Induction, In- tegral-hp, End-shield-mounted)
End Thrust, Special
End Shields, Special 65
Engineering Service, G-E
Equipment, Selection, Squirrel-cage Induc- tion Motors
Exciters, Direct-current
Explosion-proof Motors (See subdivisions under Direct-current Motors, Single-phase Motors, and Polyphase Squirrel-cage Mo- tors)

Fan-duty Motors (Variable-torque)
Field Rheostats (See Rheostats, Field)
Finishes, Paint
Form Letters, G-E Motors and Generators116
Formulas and Data144
Fractional-hp Motors, Definition of 118 (For detailed information, see under sub- divisions under each type of motor)
Frame Numbers, G-E Motors and Generators115-116
Frames, Round
Frequency INTEGRAL-HP A-C MOTORS AND GEAR- MOTORS, ODD AND SPECIAL
Frequency Converters, Induction, Type MM, Pictorial Selector
Fusing Currents

G
Gages, Oil, Sight, Price
G-E Engineering Service
Gear-motors See Motorized Speed Reducers
Generators Alternating-current, Pictorial Selec- tor
DIRECT-CURRENT Pictorial Selector
Prices and Ratings. 60–61 NOMENCLATURE 114 TYPE LETTERS 114–115
Greasing

н

Heating
High-slip Motors
High-starting-torque Motors105, 107
Hoist Motors (See also D-c Motors, Adjustable-varying- speed)
Horsepower Requirements, in Motor Selec- tion

I

Identification
Induction Motors (See Polyphase, Squirrel- cage, Induction Motors and Single-phase Induction Motors)
Inertia of Driven Machine, in Motor Selec- tion
Information, General
Initial Loads
Inspection
Installation
Insulation
CARE OF
Integral-hp Motors, G-E, Nomenclature 114
Inverted Operation and Rolling, in Motor Selection

Leads	
Light Flicker	
Limits, Horsepower (Belt and Chain Drive), in Motor Selection	
Listed Motors, Ordering	
Loom Motors, Pictorial Selector 15	
Low-starting-current Motors105	
Lubrication	

M

Machines, Portable, Selection of Motor Type. 97 Machines, Portable, Selection of Motor Type. Modifications and Accessories (See also sub-division under each type of motor) FRACTIONAL-HP A-C AND D-C MOTORS Brakes, Motor-mounted. Cord and Plugs, Two-conductor. Dynamic Balancing. Insulation, Special. Shafts, Special. Thermo-Tector. Tumbler Switches. INJECEAL-HP A.C MOTORS 63 63 63 63 63 62 63

 VTEGRAL-HP A-C MOTORS

 Accessories

 Bases and Pulleys
 67

 Bearing-temperature Relays
 67

 Brakes
 67

 Dil Sight Gages
 67

 Plugging Switch
 67

 Electrical Modifications, General Information
 64

 Overload
 64

 Ouiet Operation
 64

 Speed Changes
 64

 Temperatures, Special
 64

 Time Ratings
 64

 Torque Changes
 64

 Mechanical Modifications
 64

 INTEGRAL-HP A-C MOTORS Mechanical Modifications Bearing Clearances, Special...... Bearings. Conduit Boxes. Connections, Special. Dynamic Balancing Enclosures, Special. End Play. 65 65 65 65 66 65 66

PAGE

GENERAL ELECTRIC

	PAGE	2
Modifications and Accessories (Cont)		
Modifications and Accessories (Cont) INTEGRAL-HP AC MOTORS (Cont) Mechanical Modifications (Cont)		
End Shields, Special	68	5
End Thrust, Special	65	5
Finish, Special.	68	
Finish, Special Frames, Round. Insulation, Special	68	
Leads	00	5
Overspeed. Planing Motor Feet.	66	
Planing Motor Feet	68	
Pressing on Couplings Shafts, Special	. 66	3
Voltages, Special	66	3
INTEGRAL-HP D-C MOTORS Electrical Modifications		
Electrical Modifications		
Constant-torque Fan-duty (Variable-torque)	68	
Pump Motors	68	3
Quiet Operation	68	
Voltages, Special	67	ſ
Mechanical Modifications	68	2
BearingsBelt-tightener Attachment	69	j
Conduit Boxes, Watertight	69	9
End Thrust, Special Face and Flange End Shields	69	
Finish, Special	69	
Frames, Round	69	9
Insulation, Special	69	
Planing Feet. Pressing on Couplings Shafts, Special.	69	
Shafts Special	68	
Split End Shields	0	9
Vertical Additions	69	,
Motor-generator Sets, Induction		
PICTORIAL SELECTOR	16	
PRICES AND RATINGS	60	,
Motorized Speed Reducers Description	50	•
Gear System.	51	
Selection	52	2
Speed Reducers, Fractional-hp		
DESCRIPTION		
MOUNTING DIMENSIONS PICTORIAL SELECTOR	89-90	í
PRICES AND RATINGS.	. 5	5
Prices and Ratings Weights	89-90)
Speed Reducers, Integral-hp		
DESCRIPTION.	56-57	[
DIMENSIONS. PICTORIAL SELECTOR.	. 14	í
PRICES AND RATINGS	58-59	j
Mounting Dimensions		
NOT STANDARDIZED	5-116	j
STANDARDIZED11)
Mountings, Prices, Mechanical Modific		
tions	68)
Multispeed Motors	25	5

N

Nameplates, Code Letters116
Nomenclature G-E Motors and Generators114 Letters and Numbers Defined118
Normal-starting-torque Motors

0

Ohm's Law 144
Oil Sight Gage
Open Motors (<i>See</i> subdivisions under Polyphase, Single-phase, and Direct-current Motors)
Order Blanks (See back of Catalog)
Ordering Directions
Ordinances
Overcurrent Protection
Overhauling
Overloads, Integral-hp A-c Motors and Gear- Motors
Overspeed

Paint, Finishes
Phases, in Motor Selection
Pictorial Selector
Plugging Switches, Motor-mounted, Price 67

P

GENERAL SELECTRIC

Polyphase Motors ADJUSTABLE-CONSTANT-SPEED TYPE BTA	
PICTORIAL SELECTOR	
Company at on Instranton Monona	
Efficiencies	
Storker-case resolution motors 106 Frequency and Voltage, Variation Allowed	
Speed	
Starting Torques	
Fractional-hp, Open, General-purpose, Types K, KC, KH	
Types K, KC, KH Control	
Control	
Description	
Description	
Pictorial Selector	
Prices and Ratings	
Fractional-hp, Totally Enclosed, Indus-	
trial and Machine-tool, Types K, BC Control	
Weights, 79 Fractional-hp, Totally Enclosed, Indus- trial and Machine-tool, Types K, BC Control	
GEA-606) Description	
Mounting Dimensions	
Description	
Weights	
End-shield-mounted, Tri-Clad Motors,	
Control	
GEA-606) Description	
Description	
pany) Pictorial Selector	
Prictorial Selector	
Open, General-purpose	
Control	
Mounting Dimensions	
Prices and Ratings	
Control	
Control	
Mounting Dimensions	
Prices and Ratings	
Weights	
Splashproof Tri-Clad Motors, Types K, KG, KR	
KG, KR	
Control 72 (See also G-E Control Catalog, GEA-606)	
KG, KR Control	
KG, KR 72 Control 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 72-73 Description 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Weights. 83	
KG, KR 72 Control 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 72-73 Description 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Weights. 83	
KG, KR Control	
KG, KR Control	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions 81 Pictorial Selector 7 Prices and Ratings 28 Weights 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR Control 72-73 Description 29-30 Modification and Accessories 64 Mounting Dimensions 82 Pictorial Selector 7 Prices and Ratings 28 Veights. 83 Vertical, Open and Totally Enclosed, Type K 83 Vertical, Open and Totally Enclosed, Type K 83 Control (See also G-E Control Catalog, GEA-606) 64	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions 81 Pictorial Selector 7 Prices and Ratings 28 Weights 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 70-77 Description 29-30 Modification and Accessories 64 Mounting Dimensions 82 Pictorial Selector 7 Prices and Ratings 29-30 Modification and Accessories 64 Mounting Dimensions 82 Pictorial Selector 7 Prices and Ratings 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K S3 Control (See also G-E Control Catalog, GEA-606) 22 Description 32 Modification and Accessories 64	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 72–73 Description 29–30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 20–30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K 6EA-606) Description. 32 Modification and Accessories. 64 Mounting Dimensions. 85 Pictorial Selector 32 Modification and Accessories. 64 Mounting Dimensions. 85 Pictorial Selector 85 <td></td>	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Ex- plosion-proof, Types K, KG, KR Control. 72-73 Description. 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K 33 Control (See also G-E Control Catalog, GEA-606) 32 Description. 32 Modification and Accessories 64 Mounting Dimensions. 85 Prices and Ratings. 33	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions 81 Pictorial Selector 7 Prices and Ratings 28 Weights 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 70 Control	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 70-73 Description 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 29-30 Modification and Accessories. 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K Control (See also G-E Control Catalog, GEA-606) 32 Modification and Accessories. 64 Mounting Dimensions. 85 Pictorial Selector. 8 Prices and Ratings. 33 Weights. 83 Prices and Ratings. 33 Weights. 85	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Ex- plosion-proof, Types K, KG, KR Control 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 20-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Vertical, Open and Totally Enclosed, Type K Control (See also G-E Control Catalog, GEA-606) 2 Description. 32 Modification and Accessories 64 Mounting Dimensions. 85 Pictorial Selector 7 Serget Acode) 33 Description. 32 Modification and Accessories 64 <td< td=""><td></td></td<>	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR Control. 72–73 Description 29–30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector. 7 Prices and Ratings. 30 Weights. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K 70 Control 32 Modification and Accessories. 64 Mounting Dimensions. 85 Pictorial Selector. 8 Prices and Ratings. 33 Weights. 33 Weights. 83 Synchronous, Types TS, QS 85 Synchronous, Types, High-speed Control (See also G-E Control Catalog, GEA-606) 6	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 72-73 Description. 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K Control (See also G-E Control Catalog, (See also G-E Control Catalog, 33 Weights. 33 Weights. 33 Weights. 33 General-Purpose, High-speed 33 Gentrol (See also G-E Control Catalog, General-Purpose, High-speed <t< td=""><td></td></t<>	
KG, KR Control	
KG, KR Control	
KG, KR Control	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector. 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 70 Control. 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector. 7 Prices and Ratings. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K 83 Control (See also G-E Control Catalog, GEA-606) 32 Description. 33 33 Weights. 85 5 Structure of the G-E Control Catalog, GEA-606) 33 Description. 33 33 Weights. 85 Structure on the data strugs. 33 Weights. 85 Structure on the data strugs. 33 Weights. 85 Structure on the data strugs. 33 </td <td></td>	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion.proof, Types K, KG, KR 70 Control. 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 29-30 Modification and Accessories. 64 Mounting Dimensions. 82 Pictorial Selector. 7 Prices and Ratings. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K Control (See also G-E Control Catalog, GEA-606) Description. 32 Modification and Accessories. 64 Mounting Dimensions. 85 Syncethronous, Types TS, OS 33 General-Purpose, High-speed 33 Control (See also G-E Control Catalog, GEA-606)	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 70 Control	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Ex- plosion-proof, Types K, KG, KR Control 72-73 Description 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K 31 Control (See also G-E Control Catalog, GEA-606) Description. 32 Modification and Accessories 64 Mounting Dimensions. 85 Prices and Ratings. 33 Weights. 85 StyncHRONOUS, TYPES TS, QS General-Purpose, High-speed Control (See also G-E Control Catalog, GEA-606) 35 Description. 35 Mounting Dimensions (Refer to Com- pany) 36	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Ex- plosion-proof, Types K, KG, KR Control 72-73 Description 29-30 Modification and Accessories 64 Mounting Dimensions. 82 Pictorial Selector 7 Prices and Ratings. 30 Weights. 83 Vertical, Open and Totally Enclosed, Type K 31 Control (See also G-E Control Catalog, GEA-606) Description. 32 Modification and Accessories 64 Mounting Dimensions. 85 Prices and Ratings. 33 Weights. 85 StyncHRONOUS, TYPES TS, QS General-Purpose, High-speed Control (See also G-E Control Catalog, GEA-606) 35 Description. 35 Mounting Dimensions (Refer to Com- pany) 36	
KG, KR 72 (See also G-E Control Catalog, GEA-606) 25-26, 28 Modifications and Accessories 64 Mounting Dimensions. 81 Pictorial Selector 7 Prices and Ratings. 28 Weights. 85 Totally Enclosed, Standard and Explosion-proof, Types K, KG, KR 70 Control	

PAGE

PAGE
Portable Machines (See Machines, Portable)
Power Continuity, in Motor Selection 97 Power Supply
IN MOTOR SELECTION
Prices and Ratings (See subdivision under
Prices and Ratings (See subdivision under each type of motor) Protected Enclosures, Types B, CD
DESCRIPTION 48
Publications, List of G-E
Pulleys, Selection 126 Pump Motors 68
Q
Quietness
R
Ratings, Temperature and Time, Integral-hp A-c Motors and Gear-motors
Relays, Bearing-temperature, Price 67
Replacements, Ordering
Rotation, Direction
s
Sale, Terms of
Schedule, Operating
Screenless Open Motors, Pictorial Selector. 15 Selection of Motors
Self-(pipe-)ventilated Motors, Types B, CD
DESCRIPTION
Series-motor Parts, for Business Machines and Portable Devices
Service-factor
Service-record Cards for Motors
Servicing
DESCRIPTION
Shafts
HORIZONTAL OR VERTICAL, IN MOTOR
SELECTION
Shell-type Motors, Pictorial Selector
Shunt-wound Motors
Speed-torque Curves
Types and Characteristics
Capacitor, Open, Type KC Control
Control
Description
Mounting Dimensions
Weights
Split-phase, Open, Type KH Control
Control. 72 (See also G-E Control Catalog, GEA-606) Description 37-38 101
Description
Mounting Dimensions
Mounting Dimensions
Universal-varying-speed, Series, Type P, Pictorial Selector
Vertical, Type KC Control
(See G-E Control Catalog, GEA-
606) Description
Mounting Dimensions (Refer to Com- pany)
Pictorial Selector
INTEGRAL-HP
Capacitor, Open, Tri-Clad Motors, Types KC, KCJ
Control
Description and Comparison of
Types
Mounting Dimensions
Prices and Katings
Weights
(See also G-E Control Catalog, GEA-606)
Description
Mounting Dimensions
Pictorial Selector 10 Prices and Ratings

L

No. In

PAGE
Single-phase Induction Motors (Cont)
INTEGRAL-HP (Cont)
Repulsion-induction, Types SCR, SCA (Cont)
Weights
Synchronous Inductor, Type SMY
Description
Motor Data 42
Pictorial Selector
Prices and Ratings 42
Totally Enclosed, Standard and Explo-
sion-proof, Type SCR
Pictorial Selector
Prices and Ratings 41
Slip-ring Motors (See Polyphase Wound-rotor
Motors)
Space Limitations, in Motor Selection
Speed
CHANGES
RATED
Speed Reducers
See Motorized Speed Reducers
Speed-torque Curves (See Electrical Types and
Characteristics)
Speed Variator, G-E, Pictorial Selector 17
Speeds, Approximate Full-load
Speeds
RATING109
REGULATION
SYNCHRONOUS, VARIOUS FREQUENCIES 143
Types and Ranges
Splashproof Motors (See subdivision under
Direct-current Motors and Polyphase Squir-
rel-cage Motors)
Split-phase Motors (See subdivision under Single-phase Induction Motors)
Single-phase induction Motors)
Squirrel-cage Induction Motors (See Poly-
phase, Squirrel-cage Induction Motors and
Single-phase Induction Motors)
Stalling
Standards

PAGE
Starting
FREQUENT
LIMITED POWER CAPACITY
Метнору
Methods
Switches
PLUGGING, MOTOR-MOUNTED, PRICES 67
THERMAL-OVERLOAD ("THERMO-TECTOR") 62
TUMBLER
Symbols, Mounting-assembly, Wall- and
Ceiling-mounted Motors
Synchronization 123
Synchronization
Synchronous Inductor Torque Motor (See
Single-phase Induction, and Synchronous
Inductor. Motors)
Synchronous Motors
CONTROLLERS, PRICES AND RATINGS 75
RATING CHART, GENERAL ELECTRIC
TYPES AND CHARACTERISTICS
I IFES AND CHARACTERISTICS
Tapered-horsepower D-c Motors 47
Temperature, Surrounding
Textile Motors, Pictorial Selector
Thermo-Tector Overload Switch
Thermometer Scales, Centigrade and Fahren-

Textile Motors, Pictorial Selector	
Thermo-Tector Overload Switch	62
Thermometer Scales, Centigrade and Fahren-	
heit, Conversion Formula	144
Thrust	. 99
Time Ratings	. 64
Torque Changes	. 64
Torque	
REQUIREMENTS	122
STARTING, DESCRIPTION	
Totally Enclosed Motors (See subdivision	

Totally Enclosed Motors (See subdivision under Single-phase, Direct-current, and Polyphase Motors) Tri-Clad Motors (See subdivision under vari-ous types of motors)

PAGE
Type Letters, G-E Motors and Generators 114-115
Types and Characteristics, Electrical
SINGLE-PHASE MOTORS
POLYPHASE MOTORS
DIRECT-CURRENT MOTORS
SYNCHRONOUS MOTORS
Types, G-E Motors and Generators
Undervoltage Protection 122
Undervoltage Protection
subdivision of Fractional-hp. Single-phase
Induction Motors)
V
Vertical Motors (See subdivision of Fractional-
hp, Single-phase Induction, Motors)
Voltage
DISTURBANCES, NATURE OF
INTEGRAL-HP A-C MOTORS AND GEAR-
Motors
INTEGRAL-HP D-C MOTORS
LIMITATIONS OF DROP IN
(IN) MOTOR SELECTION
(IN) MOTOR SELECTION
tions)
SURGES
VARIATION ALLOWABLE
(Chart)
(Chart)
W
Wall and Online months Maters O. 1.1.117
Wall- and Ceiling-mounted Motors, Symbols.117
Water, Enclosed Equipment for
Weights (See subdivision under type of motor)
Weights, Approximate
Windings, Types
Wire and Cable Data144
Wound-rotor Motors (See Polyphase Wound-
rotor Motors)

GENERAL ELECTRIC COMPANY

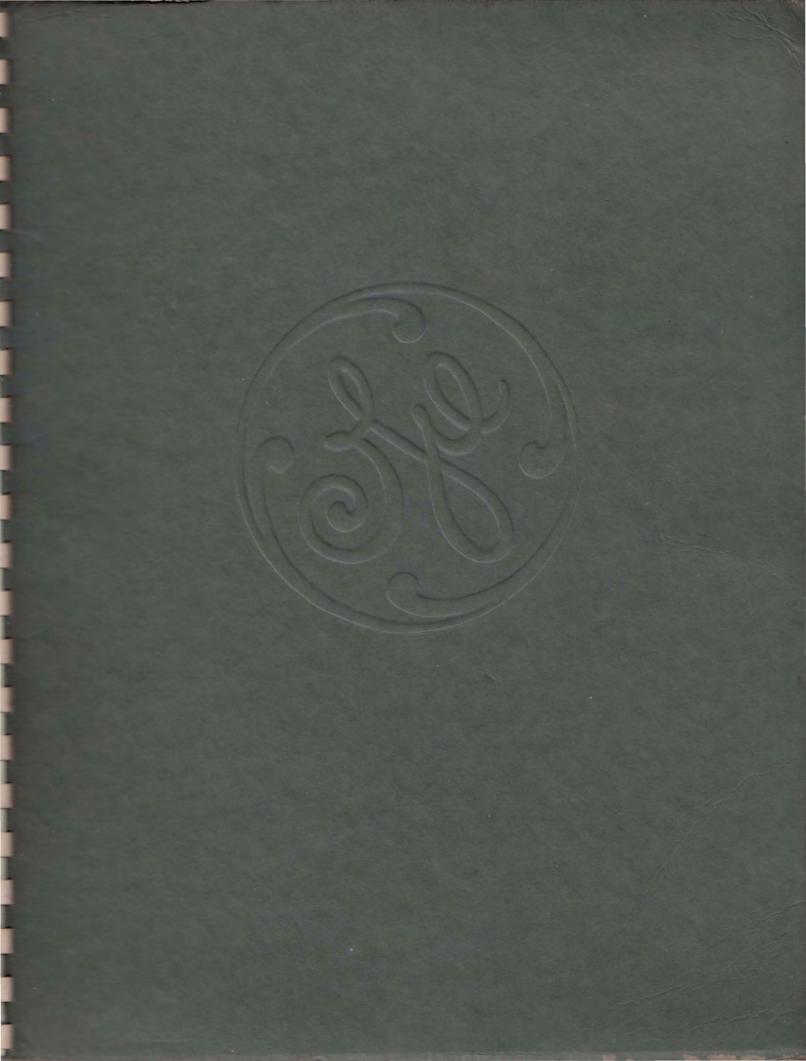
GENERAL OFFICE, SCHENECTADY, N. Y.

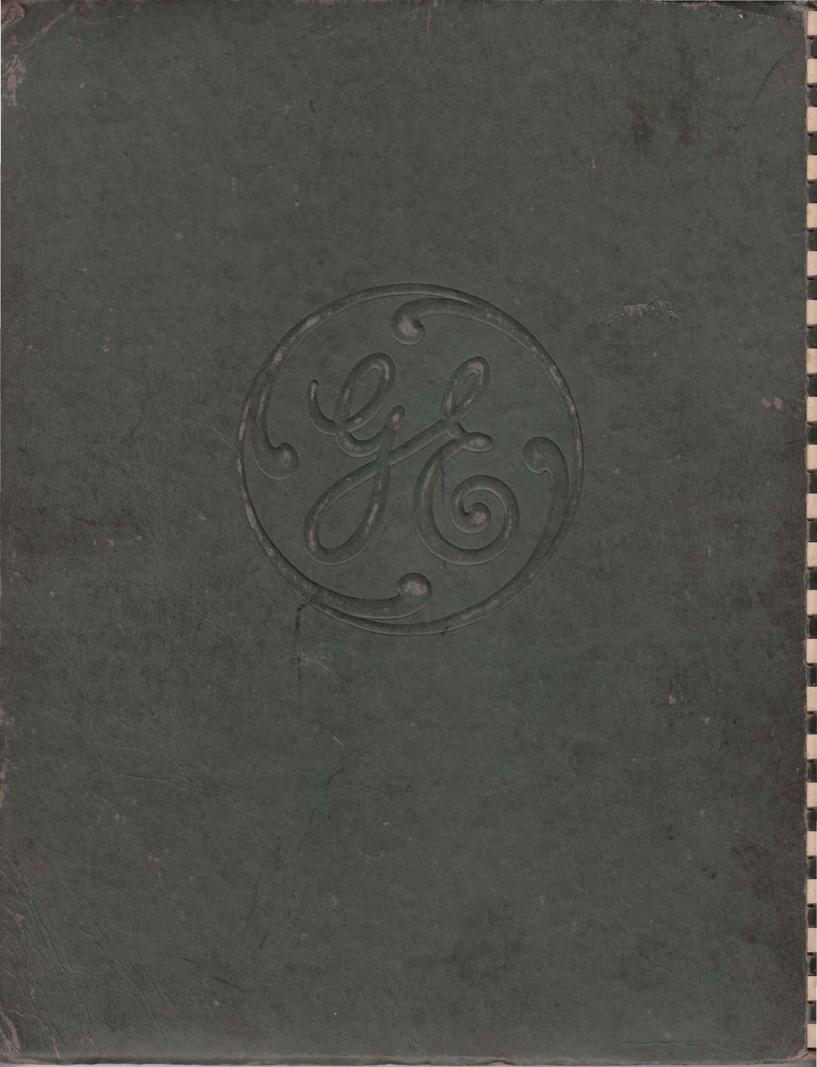
SALES OFFICES (Address nearest office)

SALES OFFICE	S (Address nearest office)
Akron, Ohio	reet Milwaukee, Wis
Atlanta, Ga	vest Minneapolis, Minn
Baltimore, Md	reet Nashville, Tenn
Denser M. 600 Main St	reet Newark N I 744 Broad Street
Dangor, Me	reet New Haven. Conn
Binghamton, N. Y	Nor Orleand La
Birmingham, Ala.	reet New Orleans, La
Biuefield, W. Va	reet Niagara Falls, N. Y
Boston, Mass	Niagara Falls, N. 1
Buffalo, N. Y 1 West Genesee St.	reet Oklahoma City, Okla 119 North Robinson Street
Butte, Mont	reet Omaha, Nebr
Cedar Rapids, Iowa	east Philadelphia, Pa1405 Locust Street
Charleston, W. Va	east Phoenix, Ariz
Charlotte N.C. 200 South Tryon St.	reet Pittsburgh, Pa
Chattanooga, Tenn	nue Portland, Me
Chicago, Ill	reet Portland, Oreg
Cincinnati Ohio 215 West Third St	reet Providence R. I 111 Westminster Street
Cloveland Ohio 4966 Woodland Ave	1116 Dooding Do 21 North Sinth Street
Columbus Ohio 40 South Third St	Reet Dishward Va
Dallas Tamas 1901 North Lamas St	
Davenport, Iowa	nue Rochester, N. Y
Dallas, lexas	st. Louis, Mo
Denver Colo	Cel Calt I also City IItah 200 Couth Main Streat
Los Moines Jown 418 West Sixth Ave	
Detroit, Mich	
Duluth, Minn	San Diego, Calif
El Paso, Texas 109 North Oregon St.	Cet Cohemandar N V
Erie, Pa10 East Twelfth St	Schenectady, N. 1
Evansville, Ind	reet Costone Work
Fort Wayne, Ind1635 Broady	vay Springfield, Ill
Fort Worth Texas 408 West Seventh St	reet opining citi M
Grand Rapids Mich. 148 Monroe Avenue, Northy	Springfield, Mass
Grand Rapids, Mich	Syracuse, N. 1
Houston, Texas	acont lacona, washessessessessessessessessessessessesses
Indianapolis, Ind	
Jackson, Mich	
Jacksonville, Fla	veet Utica, N. Y
Kansas City, Mo	Washington, D. C
Kansas City, Mo	
Los Angeles, Calif	
Louisville, Ky	
Memphis, Tenn	reet Youngstown, Ohio
Memphis, Tenn	Toungstown, Onto
Canada: Canadian General Electric Company, Ltd., Toronto	Hawaii: W. A. Ramsay, Ltd., Honolulu
	Hawan: W. A. Ramsay, Ltd., Honolulu

Motor Dealers and Lamp Agencies in all large cities and towns

SERVICE SHOPS


Atlanta, Ga. 496 Glenn Street, Southwest Buffalo, N. Y.	Milwaukee, Wis.
---	-----------------


Special service divisions are also maintained at the following Works of the Company: Erie, Pa.; Ft. Wayne, Ind.; Pittsfield, Mass.; Schenectady, N. Y.; and West Lynn, Mass. (West Lynn Works).

149

GENERAL CELECTRIC

31882 8118 4326)118809 9 8 . 4 100 88 \$958h E 0 8 C E \$ 339 328 8 S 6 Q 00 66 XQQE 9 32 めわの 968 \$0h\$1\$1.8[0 9584 5 20 b Q' 2 LI_eep 82 8661 2 9,00 Q h.9 9 0 00198 0950 1 8 0 030 300 12280 088.5 8 41 May, 1942 (7M) Plastic Binding U.S. Patent No. 1970285 License No. 87, Schenectady, N. Y. Filing No. 8030 PRINTED BY THE MAQUA COMPANY, SCHENECTADY, N. Y.

